Skip to Content

Vanderbilt-Ingram Cancer CenterVanderbilt-Ingram Cancer Center

 

VICC toll-free number 1-877-936-8422

Myelodysplastic Syndromes Treatment (PDQ®)

General Information About Myelodysplastic Syndromes

A myelodysplastic syndrome is a type of cancer in which the bone marrow does not make enough healthy blood cells and there are abnormal (blast) cells in the blood and/or bone marrow.

In a healthy person, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time.

Anatomy of the bone; drawing shows spongy bone, red marrow, and yellow marrow. A cross section of the bone shows compact bone and blood vessels in the bone marrow. Also shown are red blood cells, white blood cells, platelets, and a blood stem cell.

Anatomy of the bone. The bone is made up of compact bone, spongy bone, and bone marrow. Compact bone makes up the outer layer of the bone. Spongy bone is found mostly at the ends of bones and contains red marrow. Bone marrow is found in the center of most bones and has many blood vessels. There are two types of bone marrow: red and yellow. Red marrow contains blood stem cells that can become red blood cells, white blood cells, or platelets. Yellow marrow is made mostly of fat.

A blood stem cell may become a lymphoid stem cell or a myeloid stem cell. A lymphoid stem cell becomes a white blood cell. A myeloid stem cell becomes one of three types of mature blood cells:

Blood cell development; drawing shows the steps a blood stem cell goes through to become a red blood cell, platelet, or white blood cell.  Drawing shows a myeloid stem cell becoming a red blood cell, platelet, or myeloblast, which then becomes a white blood cell. Drawing also shows a lymphoid stem cell becoming a lymphoblast and then one of several different types of white blood cells.

Blood cell development. A blood stem cell goes through several steps to become a red blood cell, platelet, or white blood cell.

In a patient with a myelodysplastic syndrome, the blood stem cells (immature cells) do not become healthy red blood cells, white blood cells, or platelets. These immature blood cells, called blasts, do not work the way they should and either die in the bone marrow or soon after they go into the blood. This leaves less room for healthy white blood cells, red blood cells, and platelets to form in the bone marrow. When there are fewer healthy blood cells, infection, anemia, or easy bleeding may occur.

The different types of myelodysplastic syndromes are diagnosed based on certain changes in the blood cells and bone marrow.

  • Refractory anemia: There are too few red blood cells in the blood and the patient has anemia. The number of white blood cells and platelets is normal.
  • Refractory anemia with ring sideroblasts: There are too few red blood cells in the blood and the patient has anemia. The red blood cells have too much iron inside the cell. The number of white blood cells and platelets is normal.
  • Refractory anemia with excess blasts: There are too few red blood cells in the blood and the patient has anemia. Five percent to 19% of the cells in the bone marrow are blasts. There also may be changes to the white blood cells and platelets. Refractory anemia with excess blasts may progress to acute myeloid leukemia (AML). See the PDQ Adult Acute Myeloid Leukemia Treatment summary for more information.
  • Refractory cytopenia with multilineage dysplasia: There are too few of at least two types of blood cells (red blood cells, platelets, or white blood cells). Less than 5% of the cells in the bone marrow are blasts and less than 1% of the cells in the blood are blasts. If red blood cells are affected, they may have extra iron. Refractory cytopenia may progress to acute myeloid leukemia (AML).
  • Refractory cytopenia with unilineage dysplasia: There are too few of one type of blood cell (red blood cells, platelets, or white blood cells). There are changes in 10% or more of two other types of blood cells. Less than 5% of the cells in the bone marrow are blasts and less than 1% of the cells in the blood are blasts.
  • Unclassifiable myelodysplastic syndrome: The numbers of blasts in the bone marrow and blood are normal, and the disease is not one of the other myelodysplastic syndromes.
  • Myelodysplastic syndrome associated with an isolated del(5q) chromosome abnormality: There are too few red blood cells in the blood and the patient has anemia. Less than 5% of the cells in the bone marrow and blood are blasts. There is a specific change in the chromosome.
  • Chronic myelomonocytic leukemia (CMML): See the PDQ summary on Myelodysplastic/ Myeloproliferative Neoplasms Treatment for more information.

Age and past treatment with chemotherapy or radiation therapy affect the risk of a myelodysplastic syndrome.

Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get a disease; not having risk factors doesn’t mean that you will not get a disease. Talk with your doctor if you think you may be at risk. Risk factors for myelodysplastic syndromes include the following:

The cause of myelodysplastic syndromes in most patients is not known.

Signs and symptoms of a myelodysplastic syndrome include shortness of breath and feeling tired.

Myelodysplastic syndromes often do not cause early signs or symptoms. They may be found during a routine blood test. Signs and symptoms may be caused by myelodysplastic syndromes or by other conditions. Check with your doctor if you have any of the following:

  • Shortness of breath.
  • Weakness or feeling tired.
  • Having skin that is paler than usual.
  • Easy bruising or bleeding.
  • Petechiae (flat, pinpoint spots under the skin caused by bleeding).

Tests that examine the blood and bone marrow are used to detect (find) and diagnose myelodysplastic syndromes.

The following tests and procedures may be used:

  • Physical exam and history: An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient’s health habits and past illnesses and treatments will also be taken.
  • Complete blood count (CBC) with differential: A procedure in which a sample of blood is drawn and checked for the following:
    • The number of red blood cells and platelets.
    • The number and type of white blood cells.
    • The amount of hemoglobin (the protein that carries oxygen) in the red blood cells.
    • The portion of the blood sample made up of red blood cells.
    Complete blood count (CBC); left panel shows blood being drawn from a vein on the inside of the elbow using a tube attached to a syringe; right panel shows a laboratory test tube with blood cells separated into layers: plasma, white blood cells, platelets, and red blood cells.

    Complete blood count (CBC). Blood is collected by inserting a needle into a vein and allowing the blood to flow into a tube. The blood sample is sent to the laboratory and the red blood cells, white blood cells, and platelets are counted. The CBC is used to test for, diagnose, and monitor many different conditions.

  • Peripheral blood smear: A procedure in which a sample of blood is checked for changes in the number, type, shape, and size of blood cells and for too much iron in the red blood cells.
  • Cytogenetic analysis: A test in which cells in a sample of blood or bone marrow are viewed under a microscope to look for certain changes in the chromosomes.
  • Blood chemistry studies: A procedure in which a blood sample is checked to measure the amounts of certain substances, such as vitamin B12 and folate, released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease in the organ or tissue that makes it.
  • Bone marrow aspiration and biopsy: The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for abnormal cells.
    Bone marrow aspiration and biopsy; drawing shows a patient lying face down on a table and a Jamshidi needle (a long, hollow needle) being inserted into the hip bone. Inset shows the Jamshidi needle being inserted through the skin into the bone marrow of the hip bone.

    Bone marrow aspiration and biopsy. After a small area of skin is numbed, a Jamshidi needle (a long, hollow needle) is inserted into the patient’s hip bone. Samples of blood, bone, and bone marrow are removed for examination under a microscope.

    The following tests may be done on the sample of tissue that is removed:

    • Immunocytochemistry: A test that uses antibodies to check for certain antigens in a sample of bone marrow. This type of test is used to tell the difference between myelodysplastic syndromes, leukemia, and other conditions.
    • Immunophenotyping: A process used to identify cells, based on the types of antigens or markers on the surface of the cell. This process is used to diagnose specific types of leukemia and other blood disorders by comparing the cancer cells to normal cells of the immune system.
    • Flow cytometry: A laboratory test that measures the number of cells in a sample, the percentage of live cells in a sample, and certain characteristics of cells, such as size, shape, and the presence of tumor markers on the cell surface. The cells are stained with a light-sensitive dye, placed in a fluid, and passed in a stream before a laser or other type of light. The measurements are based on how the light-sensitive dye reacts to the light.
    • FISH (fluorescence in situ hybridization): A laboratory technique used to look at genes or chromosomes in cells and tissues. Pieces of DNA that contain a fluorescent dye are made in the laboratory and added to cells or tissues on a glass slide. When these pieces of DNA bind to specific genes or areas of chromosomes on the slide, they light up when viewed under a microscope with a special light.

Certain factors affect prognosis and treatment options.

The prognosis (chance of recovery) and treatment options depend on the following:

  • The number of blast cells in the bone marrow.
  • Whether one or more types of blood cells are affected.
  • Whether the patient has signs or symptoms of anemia, bleeding, or infection.
  • Whether the patient has a low or high risk of leukemia.
  • Certain changes in the chromosomes.
  • Whether the myelodysplastic syndrome occurred after chemotherapy or radiation therapy for cancer.
  • The age and general health of the patient.

Date last modified: 2014-11-11

Date last modified: 2014-11-11

Treatment Option Overview

There are different types of treatment for patients with myelodysplastic syndromes.

Different types of treatment are available for patients with myelodysplastic syndromes. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Treatment for myelodysplastic syndromes includes supportive care, drug therapy, and stem cell transplantation.

Patients with a myelodysplastic syndrome who have symptoms caused by low blood counts are given supportive care to relieve symptoms and improve quality of life. Drug therapy may be used to slow progression of the disease. Certain patients can be cured with aggressive treatment with chemotherapy followed by stem cell transplant using stem cells from a donor.

Three types of standard treatment are used:

Supportive care

Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care may include the following:

  • Transfusion therapy

    Transfusion therapy (blood transfusion) is a method of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or treatment. A red blood cell transfusion is given when the red blood cell count is low and signs or symptoms of anemia, such as shortness of breath or feeling very tired, occur. A platelet transfusion is usually given when the patient is bleeding, is having a procedure that may cause bleeding, or when the platelet count is very low.

    Patients who receive many blood cell transfusions may have tissue and organ damage caused by the buildup of extra iron. These patients may be treated with iron chelation therapy to remove the extra iron from the blood.

  • Erythropoiesis-stimulating agents

    Erythropoiesis-stimulating agents (ESAs) may be given to increase the number of mature red blood cells made by the body and to lessen the effects of anemia. Sometimes granulocyte colony-stimulating factor (G-CSF) is given with ESAs to help the treatment work better.

  • Antibiotic therapy

    Antibiotics may be given to fight infection.

Drug therapy

  • Lenalidomide

    Patients with myelodysplastic syndrome associated with an isolated del(5q) chromosome abnormality who need frequent red blood cell transfusions may be treated with lenalidomide. Lenalidomide is used to lessen the need for red blood cell transfusions.

  • Immunosuppressive therapy

    Antithymocyte globulin (ATG) works to suppress or weaken the immune system. It is used to lessen the need for red blood cell transfusions.

  • Azacitidine and decitabine

    Azacitidine and decitabine are used to treat myelodysplastic syndromes by killing cells that are dividing rapidly. They also help genes that are involved in cell growth to work the way they should. Treatment with azacitidine and decitabine may slow the progression of myelodysplastic syndromes to acute myeloid leukemia.

  • Chemotherapy used in acute myeloid leukemia (AML)

    Patients with a myelodysplastic syndrome and a high number of blasts in their bone marrow have a high risk of acute leukemia. They may be treated with the same chemotherapy regimen used in patients with acute myeloid leukemia.

Chemotherapy with stem cell transplant

Stem cell transplant is a method of giving chemotherapy and replacing blood-forming cells destroyed by the treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of a donor and are frozen for storage. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells.

This treatment may not work as well in patients whose myelodysplastic syndrome was caused by past treatment for cancer.

Stem cell transplant; (Panel 1): Drawing of stem cells being removed from a patient or donor. Blood is collected from a vein in the arm and flows through a machine that removes the stem cells; the remaining blood is returned to a vein in the other arm. (Panel 2): Drawing of a health care provider giving a patient treatment to kill blood-forming cells. Chemotherapy is given to the patient through a catheter in the chest. (Panel 3): Drawing of stem cells being given to the patient through a catheter in the chest.

Stem cell transplant. (Step 1): Blood is taken from a vein in the arm of the donor. The patient or another person may be the donor. The blood flows through a machine that removes the stem cells. Then the blood is returned to the donor through a vein in the other arm. (Step 2): The patient receives chemotherapy to kill blood-forming cells. The patient may receive radiation therapy (not shown). (Step 3): The patient receives stem cells through a catheter placed into a blood vessel in the chest.

New types of treatment are being tested in clinical trials.

Information about clinical trials is available from the NCI Web site.

Patients may want to think about taking part in a clinical trial.

For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment.

Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment.

Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.

Patients can enter clinical trials before, during, or after starting their treatment.

Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment.

Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.

Follow-up tests may be needed.

Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. This is sometimes called re-staging.

Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.

Treatment Options for Myelodysplastic Syndromes

Standard Treatment Options for Myelodysplastic Syndromes

Standard treatment options for myelodysplastic syndromes include:

Treatment of Therapy-Related Myeloid Neoplasms

Patients who were treated in the past with chemotherapy or radiation therapy may develop myeloid neoplasms related to that therapy. Treatment options are the same as for other myelodysplastic syndromes.

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with adult myelodysplastic syndromes. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI Web site.

Treatment Options for Relapsed or Refractory Myelodysplastic Syndromes

There is no standard treatment for refractory or relapsed myelodysplastic syndromes. Patients whose cancer does not respond to treatment or has come back after treatment may want to take part in a clinical trial.

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with adult myelodysplastic syndromes. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI Web site.

Date last modified: 2014-11-11

To Learn More About Myelodysplastic Syndromes

For more information from the National Cancer Institute about myelodysplastic syndromes, see the following:

For general cancer information and other resources from the National Cancer Institute, see the following:

Changes to This Summary (11/11/2014)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Editorial changes were made to this summary.

Get More Information From NCI

Call 1-800-4-CANCER

For more information, U.S. residents may call the National Cancer Institute's (NCI's) Cancer Information Service toll-free at 1-800-4-CANCER (1-800-422-6237) Monday through Friday from 8:00 a.m. to 8:00 p.m., Eastern Time. A trained Cancer Information Specialist is available to answer your questions.

Chat online

The NCI's LiveHelp® online chat service provides Internet users with the ability to chat online with an Information Specialist. The service is available from 8:00 a.m. to 11:00 p.m. Eastern time, Monday through Friday. Information Specialists can help Internet users find information on NCI Web sites and answer questions about cancer.

Write to us

For more information from the NCI, please write to this address:

NCI Public Inquiries Office
9609 Medical Center Dr.
Room 2E532 MSC 9760
Bethesda, MD 20892-9760

Search the NCI Web site

The NCI Web site provides online access to information on cancer, clinical trials, and other Web sites and organizations that offer support and resources for cancer patients and their families. For a quick search, use the search box in the upper right corner of each Web page. The results for a wide range of search terms will include a list of "Best Bets," editorially chosen Web pages that are most closely related to the search term entered.

There are also many other places to get materials and information about cancer treatment and services. Hospitals in your area may have information about local and regional agencies that have information on finances, getting to and from treatment, receiving care at home, and dealing with problems related to cancer treatment.

Find Publications

The NCI has booklets and other materials for patients, health professionals, and the public. These publications discuss types of cancer, methods of cancer treatment, coping with cancer, and clinical trials. Some publications provide information on tests for cancer, cancer causes and prevention, cancer statistics, and NCI research activities. NCI materials on these and other topics may be ordered online or printed directly from the NCI Publications Locator. These materials can also be ordered by telephone from the Cancer Information Service toll-free at 1-800-4-CANCER (1-800-422-6237).

Date last modified: 2014-11-11

Last updated: 2014-12-10

Source: The National Cancer Institute's Physician Data Query (PDQ®) Cancer Information Summaries (http://www.cancer.gov/cancertopics/pdq)