Skip to Content

Vanderbilt-Ingram Cancer CenterVanderbilt-Ingram Cancer Center

Bruce D.  Carter

Bruce D. Carter, Ph.D.

Professor of Biochemistry
Associate Director for Education and Training, Vanderbilt Brain Institute
Investigator, Kennedy Center for Research & Humanities
Director of Graduate Studies in Neuroscience

Contact Information:

Vanderbilt University Medical Center
625 Light Hall
Nashville, TN 37232-0146

Research Specialty

Molecular mechanisms of neurotrophin signaling

Research Description

I. Molecular mechanisms of neurotrophin signaling ?Our lab studies the signaling mechanisms regulating neuronal survival. Programmed cell death in the nervous system is a naturally occurring process in mammalian development; however, abnormal apoptosis is the basis for many neuropathologies, e.g. Alzheimer's and Parkinson's disease and ischemic injury. The delicate balance between neuronal survival and death is regulated, in part, by a family of growth factors referred to as the neurotrophins. The target tissues to which the neurons project produce members of this family of trophic factors. The neurotrophins promote neuronal survival and differentiation through binding to the Trks, a family of tyrosine kinase receptors, and induce apoptosis through a 75kD receptor, p75. While significant progress has been made in elucidating the mechanisms by which the Trks promote survival, much less is known about how p75 induces cell death. We recently discovered that pro-death ligands promote p75 cleavage by ??secretase, which releases a transcription factor, NRIF, to enter the nucleus. This process is required for the receptor's apoptotic signal.This research will reveal the mechanisms underlying normal mammalian neural development and function. Moreover, understanding the regulation of neural cell survival is essential for developing therapeutic strategies for neuropathologies involving apoptosis, which include many diseases and nerve lesions.

II.Molecular mechanisms of myelin formation?The other area of research in the lab is to elucidate the mechanism by which myelin forms. Myelin is a multilamellar structure that ensheaths axons and allows for the rapid conduction of electrical signals, acts as a protective barrier for axons, regulates regeneration and provides trophic support for neurons. This structure is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the CNS. The formation of peripheral myelin during development is initiated by yet to be identified signals from the axon with which the Schwann cells are associated. The overall objective of this project is to elucidate the mechanisms regulating the formation of this essential neural structure. We found that activation of the transcription factor NF-?B in Schwann cells is essential for their differentiation into a myelinating phenotype and are currently investigating the up stream activator of NF-?B and what the downstream targets are.The formation of myelin is critical for the normal function of the mammalian nervous system. Disruptions in myelination during development lead to a variety of muscular dystrophies, in particular Charcot-Marie-Tooth disease, and degeneration of myelin in adults can lead to disabling pathologies such as Multiple Sclerosis and Guillian Barre Syndrome. In addition, myelin is a key regulator of nerve regeneration, preventing it in the CNS and promoting it in the periphery. Therefore, understanding how this specialized structure forms may reveal mechanisms underlying the etiology of a number pathologies as well as potential points for therapeutic intervention.