Skip to Content

Vanderbilt-Ingram Cancer CenterVanderbilt-Ingram Cancer Center

Jialiang  Wang

Jialiang Wang, Ph.D.

Assistant Professor of Cancer Biology
Assistant Professor of Neurological Surgery
Director, Neurosurgical Oncology Laboratory

Contact Information:

Neurosurgical Surgery
T-4224 MCN
Nashville, TN 37232-2380

Research Specialty

Our laboratory centers on molecular mechanisms that mediate therapeutic resistance in human cancers and translation of this knowledge into effective therapeutics.

Research Description

Cancer is a remarkably heterogeneous disease at all aspects. This complexity represents one of the major challenges to develop precise diagnoses and effective treatments. As such, we work toward a better understanding of cancer heterogeneity and subsequently better therapeutic approaches.

1. Cancer Stem Cells.

Over the past decade, cancer cell subpopulations with stem cell-like characteristics are identified in a wide range of human cancers, including glioma. These cells are named cancer stem cells or cancer initiating cells. Cancer stem cells have extended capacity of self-renewal and can give rise to multiple lineages of differentiated progenies. Cancer stem cells in glioma and several other cancer types exhibit preferential resistance toward conventional chemoradiotherapy and targeted therapies. Therefore, these cells are blamed to produce recurrent tumors. Our laboratory has a specific interest in the mechanisms that mediate resistance to radiation and other therapeutics in glioma stem cells. To this end, we are currently working on the Notch signaling pathway and other targets to develop glioma stem cell-targeted strategies.

2. Personalized Medicine.

The oncogene addiction model describes the dependence of certain cancers on the products of one or a few oncogenes. This model represents the paradigmatic and most successful rationale for targeted cancer therapy, which has led to remarkable clinical success in some molecularly defined subsets of cancers, such as BCR-ABL-driven chronic myelogenous leukemia, EGFR-mutated non-small cell lung cancer, and so on. With rapidly evolving new technology, the Cancer Genome Atlas (TCGA) project and other studies have greatly improved our understanding of the genetic landscape of human cancers. Through multi-institutional collaborations, we have collected a large panel of patient-derived glioblastoma samples. We are working with other groups to characterize the genome and epigenome of these samples. On the basis of this platform, we are now working to identify novel links between tumor genotypes and phenotypes with a goal to develop molecular-guided treatments.

3. Epigenetic therapy.

Our genetic information is packed in chromatins. Epigenetics include all chromatin-based events that are essential for translating genetic information into cellular functions. It has become increasingly recognized that epigenetic abnormalities are critically implicated in cancer initiation and progression. Recurrent mutations altering epigenetic regulation are increasingly identified in human cancers, including glioblastoma (e.g. IDH1/2, histone H3). Strikingly, the most recent TCGA study shows that nearly half of glioblastoma tumors carry at least one mutation that affects an epigenetic regulator. We recently identified crucial functions of the BET family bromodomain proteins in proliferation and survival of glioblastoma with diverse genetic profiles. The BET proteins are epigenetic readers that specifically bind to acetylated histones and direct active transcription. Inhibition of BET proteins by small molecular inhibitors or shRNA shows that BET proteins are implicated in transcription of many important oncogenes. As such, targeting BET bromodomain proteins is expected to generate broad anti-neoplastic effects in glioblastoma and many other cancer types. On the basis of these findings, we want to develop more effective combinations that can improve FDA-approved drugs or drugs currently in pipeline. We are also interrogating the role of BET bromodomain proteins in other cancer types based on some key targets genes that we have identified.