Skip to Content

Vanderbilt-Ingram Cancer CenterVanderbilt-Ingram Cancer Center

 
Serk In Park

Serk In Park, D.D.S, Ph.D.

Assistant Professor of Medicine (Clinical Pharmacology)
Assistant Professor of Cancer Biology
VICC Member
Researcher

Contact Information:

Vanderbilt University Medical Center
1225E MRB IV
Nashville, TN 37232
615-936-7607
Fax: 615-343-2611

Profile

The primary goal of my laboratory aims to address what makes bone the most favored organ of prostate cancer spreading.  Advanced-stage prostate cancer patients uniformly develop bone lesions (i.e. bone metastasis), resulting in severe pain, immobility, and ultimately death.  A major hurdle to develop means of preventing or curing bone metastasis stems from the diversity of cell types constituting bone and the bone marrow, and determining how these cells may be involved.  Indeed, the bone marrow is a reservoir of blood-forming cells, and also serves as a seedbed for the cancer cells spreading to bone.  My laboratory endeavors to understand how exactly the bone marrow cells contribute to the development of bone metastasis, and ultimately how to suppress those cells to treat bone metastasis.   Research outcomes from my laboratory will have impacts on understanding how prostate cancer exploits the bone marrow cells to colonize bone, and more importantly will help provide biological rationale and means for targeting a specific cell type in the bone marrow as a therapeutic approach for prostate cancer patients.
Read more ....

The primary goal of my laboratory aims to address what makes bone the most favored organ of prostate cancer spreading.  Advanced-stage prostate cancer patients uniformly develop bone lesions (i.e. bone metastasis), resulting in severe pain, immobility, and ultimately death.  A major hurdle to develop means of preventing or curing bone metastasis stems from the diversity of cell types constituting bone and the bone marrow, and determining how these cells may be involved.  Indeed, the bone marrow is a reservoir of blood-forming cells, and also serves as a seedbed for the cancer cells spreading to bone.  My laboratory endeavors to understand how exactly the bone marrow cells contribute to the development of bone metastasis, and ultimately how to suppress those cells to treat bone metastasis.   Research outcomes from my laboratory will have impacts on understanding how prostate cancer exploits the bone marrow cells to colonize bone, and more importantly will help provide biological rationale and means for targeting a specific cell type in the bone marrow as a therapeutic approach for prostate cancer patients.

Education
  • D.D.S, Yonsei University, Seoul, Korea
  • Ph.D. in Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 
  • Research Fellowship, The University of Michigan, Ann Arbor, MI
Research Specialty

Bone marrow-derived cells in the prostate cancer microenvironment

Research Description

The tumor microenvironment is comprised of primary cancer cells mixed with multiple types of stromal cells, of which a significant fraction originates in the bone marrow. For this reason, bone is an essential partner for tumor progression. However, it is unclear how tumor cells co-opt the bone and/or bone marrow to facilitate a favorable tumor microenvironment.

Among those bone marrow-derived cells in the tumor microenvironment, a subset of myeloid lineage cells, myeloid-derived suppressor cells (MDSCs), has been shown to correlate significantly with tumor progression. MDSCs suppress the host immune response and infiltrate tumor tissue to promote tumor growth and angiogenesis. Beyond these critical roles, little is known about the regulation of MDSCs within bone by distant primary tumor cells, not to mention therapeutic approaches targeting MDSCs.

The Park Laboratory aims to address how tumor cells stimulate the bone microenvironment to regulate MDSCs, contributing to tumor growth, angiogenesis and/or metastasis.

For this aim, prostate cancer takes a unique position, not only because of disastrous mortality and morbidity, but also because of preferential metastasis to the skeleton. Accordingly, prostate cancer cells secrete numerous important bone-modulating cytokines, leading to osteoblastic/osteolytic reactions that stimulate the adjacent bone marrow cells.

We will investigate the molecular mechanism of MDSC activation, expansion, and/or mobilization within the bone marrow of prostate tumor hosts. Additionally, we will examine the therapeutic approaches targeting MDSCs in pre-clinical models with investigational drugs. The potential research outcomes will promote understanding of the vicious partnership between cancer and bone.

Publications