Skip to main content

Physician Search

 

Consuelo Wilkins, MD, MSCI, Senior Vice President for Health Equity and Inclusive Excellence for Vanderbilt University Medical Center (VUMC) and Senior Associate Dean for Health Equity and Inclusive Excellence for Vanderbilt University School of Medicine, always knew she wanted to be a physician. "Health equity was built into everything I did, even if I didn’t know it or recognize it at the time," Wilkins said. "I have always learned and believed that people are the same — everyone deserves to be healthy, and everyone should have the best opportunities to take care of themselves and their families." Click below to learn more about health equity initiatives.

https://momentum.vicc.org/2021/09/everyone-deserves-to-be-healthy/
Vanderbilt was the lead site for an NIH-funded, phase 2, multicenter influenza vaccine study in pediatric allogeneic hematopoietic stem cell transplant (HCT) recipients that may lead to a change in the current flu vaccine recommendations in this vulnerable population. Natasha Halasa, MD, MPH and colleagues recently published in the New England Journal of Medicine, that two doses of high-dose trivalent flu vaccine resulted in higher amounts of influenza-specific antibodies than two doses of standard dose quadrivalent vaccine.

https://news.vumc.org/2023/03/02/high-dose-flu-vaccine-beneficial-for-pediatric-stem-cell-transplant-patients/

Displaying 61 - 70 of 87

Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Patients with Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors

Multiple Cancer Types

This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs.
Colon, Esophageal, Gastric/Gastroesophageal, Gastrointestinal, Liver, Pancreatic, Rectal
IV
Idrees, Kamran
NCT06016855
VICCGI2283

Pembrolizumab after Radiation Therapy and Chemotherapy in Treating Patients with Limited Stage Small Cell Lung Cancer

Lung

This phase II trial studies how well pembrolizumab after standard treatment with radiation plus the following chemotherapy drugs: cisplatin or carboplatin, plus etoposide works in treating patients with limited stage small cell lung cancer (LS-SCLC). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab after standard treatment with radiation plus chemotherapy may increase the ability of the immune system to fight LS-SCLC.
Lung
II
Whitaker, Ryan
NCT06140407
VICCTHO22114

A Study to Compare Treatment with the Drug Selumetinib Alone versus Selumetinib and Vinblastine in Patients with Recurrent or Progressive Low-Grade Glioma

This phase III trial investigates the best dose of vinblastine in combination with selumetinib and the benefit of adding vinblastine to selumetinib compared to selumetinib alone in treating children and young adults with low-grade glioma (a common type of brain cancer) that has come back after prior treatment (recurrent) or does not respond to therapy (progressive). Selumetinib is a drug that works by blocking a protein that lets tumor cells grow without stopping. Vinblastine blocks cell growth by stopping cell division and may kill cancer cells. Giving selumetinib in combination with vinblastine may work better than selumetinib alone in treating recurrent or progressive low-grade glioma.
Not Available
III
Esbenshade, Adam
NCT04576117
COGACNS1931

An Imaging Agent (Panitumumab-IRDye800) for the Detection of Head and Neck Cancer During Surgery

Head/Neck

This phase II trial studies the effect of panitumumab-IRDye800 in detecting head and neck cancer during surgery in patients head and neck cancer. Doctors who perform surgery for head and neck cancer are well-trained in removing all of the cancer that can be seen during the operation; however, there are times when there is cancer that is so small that it cannot be seen by the surgeon. Panitumumab-IRDye800 is a combination of panitumumab and IRDye800CW. Panitumumab works by attaching to the cancer cell in a unique way that allows the drug to get into the cancer tissue. IRDye800CW is an investigational dye that, when tested in the laboratory, helps various characteristics of human tissue show up better when using a special camera. Panitumumab-IRDye800 is a combination of the drug and the dye that attaches to cancer cells and appears to make them visible to the doctor when he or she uses the special camera during the surgery. Giving panitumumab-IRDye800 may help doctors better identify cancer in the operating room.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109

Neuroblastoma Maintenance Therapy Trial

Multiple Cancer Types

Difluoromethylornithine (DFMO) will be used in an open label, single agent, multicenter,
study for patients with neuroblastoma in remission. In this study subjects will receive 730
Days of oral difluoromethylornithine (DFMO) at a dose of 750 mg/m2 250 mg/m2 BID (strata 1,
2, 3, and 4) OR 2500 mg/m2 BID (stratum 1B) on each day of study. This study will focus on
the use of DFMO in high risk neuroblastoma patients that are in remission as a strategy to
prevent recurrence.
Endocrine, Neuroblastoma (Pediatrics), Neuroendocrine, Pediatrics
II
Pastakia, Devang
NCT02679144
VICCPED16157


Testing the Addition of a New Drug, Daratumumab/rHuPH20, to the Usual Treatment (Lenalidomide) as Post-stem Cell Transplant Treatment for Multiple Myeloma, DRAMMATIC Study

Multiple Myeloma

This phase III trial compares the effect of usual treatment (lenalidomide) to using daratumumab/rHuPH20 plus the usual treatment after stem cell transplantation in patients with multiple myeloma. This drug combination may help patients live longer after their stem cell transplant. Another purpose of this study is to learn if the presence and amount of minimal residual disease (MRD) can help doctors predict when a patients multiple myeloma will get worse. MRD is the name for the small number of cancer cells that remain in the patient even after their multiple myeloma has been treated and they have no symptoms of the disease. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with daratumumab/rHuPH20, may induce changes in bodys immune system and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide and daratumumab/rHuPH20 may work better in treating patients with multiple myeloma compared to lenalidomide alone.
Multiple Myeloma
III
Baljevic, Muhamed
NCT04071457
VICC-NTPCL23369

Non-Chemotherapy Treatment (Ramucirumab plus Pembrolizumab) or Standard Chemotherapy for Treatment of Stage IV or Recurrent Non-Small Cell Lung Cancer Following Immunotherapy, Pragmatica-Lung Trial

Lung

This phase III trial compares the effect of the combination therapy with ramucirumab and pembrolizumab versus standard of care chemotherapy for the treatment of non-small cell lung cancer that is stage IV or that has come back after a period of improvement (recurrent). Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help doctors find out if combination therapy with ramucirumab and pembrolizumab could help patients with stage IV or recurrent non-small cell lung cancer live longer compared to standard chemotherapy.
Lung
III
Iams, Wade
NCT05633602
VICC-NTTHO23073

Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung

Neuroendocrine

This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
Neuroendocrine
II/III
Ramirez, Robert
NCT05058651
SWOGGIS2012

Study of INBRX-109 in Conventional Chondrosarcoma

Sarcoma

Randomized, blinded, placebo-controlled, Phase 2 study of INBRX-109 in unresectable or
metastatic conventional chondrosarcoma patients.
Sarcoma
II
Davis, Elizabeth
NCT04950075
VICCSAR2165