Skip to main content

Physician Search

 


Displaying 1 - 10 of 12

Nivolumab and Ipilimumab in Treating Patients with Esophageal and Gastroesophageal Junction Adenocarcinoma Undergoing Surgery

Multiple Cancer Types

This phase II / III trial studies the usefulness of treatment with nivolumab and ipilimumab in addition to standard of care chemotherapy and radiation therapy in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery. Immunotherapy with antibodies, such as nivolumab and ipilimumab, may remove the brake on the bodys immune system and may interfere with the ability of tumor cells to grow and spread. Chemotherapy and radiation therapy may reduce the tumor size and the amount of normal tissue that needs to be removed during surgery. A combined treatment with nivolumab and ipilimumab, chemotherapy, and radiation therapy might be more effective in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery.
Esophageal, Gastric/Gastroesophageal
II/III
Gibson, Mike
NCT03604991
ECOGGIEA2174

Talimogene Laherparepvec and Radiation Therapy in Treating Patients with Newly Diagnosed Soft Tissue Sarcoma That Can Be Removed by Surgery

Sarcoma

This phase II trial studies the side effects of talimogene laherparepvec and radiation therapy and to see how well they work in treating patients with newly diagnosed soft tissue sarcoma that can be removed by surgery. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Radiation therapy uses high energy x-rays, photons. electrons, or protons to kill tumor cells and shrink tumors. Giving talimogene laherparepvec and radiation therapy may work better in treating patients with soft tissue sarcoma.
Sarcoma
II
Davis, Elizabeth
NCT02923778
VICCSAR1914ET-CT

Observation of Low-Dose Skin Electron Therapy in Patients with Refractory or Relapsed Stage IB-IIIA Mycosis Fungoides

Lymphoma

This trial collects data on response to low-dose skin electron therapy in patients with stage IB-IIIA mycosis fungoides that does not respond to treatment (refractory) or has come back (relapsed). Collecting data on patient's response to therapy, both in terms of changes in the skin and in terms of quality of life following treatment, may help doctors better predict response to therapy.
Lymphoma
N/A
Kirschner, Austin
NCT02702310
VICCRAD1633

Radiation Therapy and Pembrolizumab or Cisplatin in Treating Patients with Stage III / IV p16 Positive Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase II trial studies how well radiation therapy works when given with pembrolizumab or cisplatin in treating patients with stages III / IV p16-positive head and neck squamous cell carcinoma. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the bodys immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving pembrolizumab during and after radiation therapy or cisplatin during radiation therapy works better in treating participants with head and neck squamous cell carcinoma.
Head/Neck
II
Gibson, Mike
NCT03383094
VICCHN1966

Efficacy and Safety Study of Stereotactic Body Radiotherapy (SBRT) With or Without Pembrolizumab (MK-3475) in Adults With Unresected Stage I or II Non-Small Cell Lung Cancer (NSCLC) (MK-3475-867 / KEYNOTE-867)

Multiple Cancer Types

The purpose of this study is to assess the efficacy and safety of stereotactic body radiotherapy (SBRT) plus pembrolizumab (MK-3475) in the treatment of adult participants with unresected stage I or II (Stage IIB N0, M0) non-small cell lung cancer (NSCLC). The primary study hypotheses are: 1. SBRT plus pembrolizumab prolongs Event-free Survival (EFS) compared to SBRT plus placebo (normal saline solution), and 2. SBRT plus pembrolizumab prolongs Overall Survival (OS) compared to SBRT plus placebo.
Lung, Non Small Cell
III
Osmundson, Evan
NCT03924869
VICCTHO1940

Lower-Dose Chemoradiation in Treating Patients with Early-Stage Anal Cancer, the DECREASE Study

Rectal

This phase II trial studies how well lower-dose chemotherapy plus radiation (chemoradiation) therapy works in comparison to standard-dose chemoradiation in treating patients with early-stage anal cancer. Drugs used in chemotherapy, such as mitomycin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. This study may help doctors find out if lower-dose chemoradiation is as effective and has fewer side effects than standard-dose chemoradiation, which is the usual approach for treatment of this cancer type.
Rectal
II
Eng, Cathy
NCT04166318
ECOGGIEA2182

De-intensified Radiation Therapy with Chemotherapy (Cisplatin) or Immunotherapy (Nivolumab) in Treating Patients with Early-Stage, HPV-Positive, Non-Smoking Associated Oropharyngeal Cancer

Head/Neck

This phase II / III trial studies how well a reduced dose of radiation therapy works with nivolumab compared to cisplatin in treating patients with human papillomavirus (HPV)-positive oropharyngeal cancer that is early in its growth and may not have spread to other parts of the body (early-stage), and is not associated with smoking. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the bodys immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial is being done to see if a reduced dose of radiation therapy and nivolumab works as well as standard dose radiation therapy and cisplatin in treating patients with oropharyngeal cancer.
Head/Neck
II/III
Lockney, Natalie
NCT03952585
NRGHN005

Standard Chemotherapy in Treating Young Patients with Medulloblastoma or Other Central Nervous System Embryonal Tumors

Neuroblastoma (Pediatrics)

This phase IV trial studies how well standard chemotherapy works in treating young patients with medulloblastoma or other central nervous system embryonal tumors. Drugs used in standard chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
Neuroblastoma (Pediatrics)
IV
Esbenshade, Adam
NCT02875314
VICCPED1751

Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients with High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy

Multiple Cancer Types

This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, in order to classify patients into post-consolidation treatment groups. On the second part of this study, patients will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
Pediatric Leukemia, Pediatrics
III
Zarnegar-Lumley, Sara
NCT03959085
COGAALL1732

Testing Nivolumab and Ipilimumab with Short-Course Radiation in Locally Advanced Rectal Cancer

This phase II trial investigates the effect of nivolumab and ipilimumab when given together with short-course radiation therapy in treating patients with rectal cancer that has spread to other places in the body (advanced). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving nivolumab, ipilimumab, and radiation therapy may kill more cancer cells.
Not Available
II
Ciombor, Kristen
NCT04751370
ECOGGIEA2201