Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Biospecimen Analysis in Determining Effects of Chemotherapy on Fertility in Osteosarcoma Survivors

Multiple Cancer Types

This research trial studies saliva, semen, and blood samples to determine effects of chemotherapy on fertility in osteosarcoma survivors. Study biospecimen samples from osteosarcoma survivors in the laboratory may help doctors learn whether chemotherapy causes fertility problems and to learn more about the long term effects.
Pediatrics, Sarcoma
N/A
Borinstein, Scott
NCT03206450
COGALTE16C1

Vemurafenib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03220035
COGAPEC1621G

Olaparib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03233204
COGAPEC1621H

Ensartinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or do not respond to treatment (refractory) and have spread to other places in the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213652
COGAPEC1621F

Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients with Relapsed or Refractory Germ Cell Tumors

Multiple Cancer Types

This randomized phase III trial studies how well standard-dose combination chemotherapy works compared to high-dose combination chemotherapy and stem cell transplant in treating patients with germ cell tumors that have returned after a period of improvement (relapsed) or did not respond to treatment (refractory). Chemotherapy drugs, such as paclitaxel, ifosfamide, cisplatin, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Colony-stimulating factors, such as filgrastim or pegfilgrastim, and certain chemotherapy drugs, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. It is not yet known whether high-dose combination chemotherapy and stem cell transplant are more effective than standard-dose combination chemotherapy in treating patients with refractory or relapsed germ cell tumors.
Germ Cell (Pediatrics), Pediatrics
III
Borinstein, Scott
NCT02375204
COGA031102

Combination Chemotherapy with or without Temsirolimus in Treating Patients with Intermediate Risk Rhabdomyosarcoma

Multiple Cancer Types

This randomized phase III trial studies how well combination chemotherapy (vincristine sulfate, dactinomycin, cyclophosphamide alternated with vincristine sulfate and irinotecan hydrochloride or vinorelbine) works compared to combination chemotherapy plus temsirolimus in treating patients with rhabdomyosarcoma (cancer that forms in the soft tissues, such as muscle), and has an intermediate chance of coming back after treatment (intermediate risk). Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Combination chemotherapy and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether combination chemotherapy or combination chemotherapy plus temsirolimus is more effective in treating patients with intermediate-risk rhabdomyosarcoma.
Pediatrics, Sarcoma
III
Borinstein, Scott
NCT02567435
COGARST1431

Study of Lenvatinib in Combination With Everolimus in Recurrent and Refractory Pediatric Solid Tumors, Including Central Nervous System Tumors

Multiple Cancer Types

Phase 1 of this study, utilizing a rolling 6 design, will be conducted to determine a maximum tolerated dose (MTD) and recommended Phase 2 dose (RP2D), and to describe the toxicities of lenvatinib administered in combination with everolimus once daily to pediatric participants with recurrent / refractory solid tumors. Phase 2, utilizing Simon's optimal 2-stage design, will be conducted to estimate the antitumor activity of lenvatinib in combination with everolimus in pediatric participants with selected recurrent / refractory solid tumors including Ewing sarcoma / peripheral primitive neuroectodermal tumor (pPNET), rhabdomyosarcoma, and high grade glioma (HGG) using objective response rate (ORR) at Week 16 as the outcome measure.
Miscellaneous, Pediatrics
I/II
Borinstein, Scott
NCT03245151
VICCPED2038

Active Surveillance, Bleomycin, Carboplatin, Etoposide, or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors

Multiple Cancer Types

This phase III trial studies how well active surveillance, bleomycin, carboplatin, etoposide, or cisplatin work in treating pediatric and adult patients with germ cell tumors. Active surveillance may help doctors to monitor subjects with low risk germ cell tumors after their tumor is removed. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
Germ Cell (Pediatrics), Gynecologic, Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531

Palbociclib in Treating Patients with Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

Miscellaneous

This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Miscellaneous
II
Borinstein, Scott
NCT03526250
COGAPEC1621I

PI3K / mTOR Inhibitor LY3023414 in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with TSC or PI3K / MTOR Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well PI3K / mTOR inhibitor LY3023414 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K / MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). PI3K / mTOR inhibitor LY3023414 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213678
COGAPEC1621D

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: