Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Evaluation of Patient Reported Outcomes in Patients with Digestive System and Lung Neuroendocrine Cancer, NET-PRO study

Gastrointestinal

This study evaluates the patient reported outcomes in patients with digestive system neuroendocrine cancer and lung neuroendocrine cancer. Patients with neuroendocrine cancer usually have a high symptom burden which may have a negative effect on health-related quality of life (HRQoL). Patient questionnaires gather information describing symptoms and effect on quality of life, cancer type and any treatments received. Studying quality of life in patients receiving treatment for neuroendocrine cancers may help identify the effects of treatment and improve future treatment plans. Information gathered from this study may help researchers understand whether patient's diagnosis, symptoms, and order of cancer treatments have any effect on quality of life.
Gastrointestinal
N/A
Ramirez, Robert
NCT05064150
VICCGI2247

Biomarker Verification in Pediatric Chronic GvHD: ABLE 2.0 / PTCTC GVH 1901 Study

This study will validate a previously developed pediatric prognostic biomarker algorithm
aimed at improving prediction of risk for the later development of chronic graft-versus-host
disease (cGvHD) in children and young adults undergoing allogeneic hematopoietic stem cell
transplant.

By developing an early risk stratification of patients into low-, intermediate-, and
high-risk for future cGvHD development (based upon their biomarker profile, before the onset
of cGvHD), pre-emptive therapies aimed at preventing the onset of cGvHD can be developed
based upon an individual's biological risk profile.

This study will also continue research into diagnostic biomarkers of cGvHD, and begin work
into biomarker models that predict clinical response to cGvHD therapies.
Not Available
N/A
Kitko, Carrie
NCT04372524
VICCPED2183

cfDNA Assay Prospective Observational Validation for Early Cancer Detection and Minimal Residual Disease

Miscellaneous

This is an observational case-control study to train and validate a genome-wide methylome
enrichment platform to detect multiple cancer types and to differentiate amongst cancer
types. The cancers included in this study are brain, breast, bladder, cervical, colorectal,
endometrial, esophageal, gastric, head and neck, hepatobiliary, leukemia, lung, lymphoma,
multiple myeloma, ovarian, pancreatic, prostate, renal, sarcoma, and thyroid. These cancers
were selected based on their prevalence and mortality to maximize impact on clinical care.

Additionally, the ability of the whole-genome methylome enrichment platform to detect minimal
residual disease after completion of cancer treatment and to detect relapse prior to clinical
presentation will be evaluated in four cancer types (breast, colorectal, lung, prostate).
These cancers were selected based on the existing clinical landscape and treatment
availability.
Miscellaneous
N/A
Rini, Brian
NCT05366881
VICCMD21111

Study to Learn More About the Safety and Effectiveness of the Drug VITRAKVI During Routine Use in Patients With TRK Fusion Cancer Which is Locally Advanced or Spread From the Place Where it Started to Other Places in the Body

Multiple Cancer Types

In this observational study researcher want to learn more about the effectiveness of drug
VITRAKVI (generic name: larotrectinib) and how well the drug is tolerated during routine use
in patients with TRK fusion cancer which is locally advanced or spread from the place where
it started to other places in the body. TRK fusion cancer is a term used to describe a
variety of common and rare cancers that are caused by a change to the NTRK (Neurotrophic
Tyrosine Kinase) gene called a fusion. During this fusion, an NTRK gene joins together, or
fuses, with a different gene. This joining results in the activation of certain proteins (TRK
fusion proteins), which can cause cancer cells to multiply and form a tumor. VITRAKVI is an
approved drug that blocks the action of the NTRK gene fusion. This study will enroll adult
and paediatric patients suffering from a solid tumor with NTRK gene fusion for whom the
decision to treat their disease with VITRAKVI has been made by their treating physicians.
During the study, patients' medical information such as treatment information with VITRAKVI,
other medication or treatments, changes in disease status and other health signs and symptoms
will be collected within the normal medical care by the treating doctor. Participants will be
observed over a period from 24 to 60 months.
Pediatric Solid Tumors, Pediatrics
N/A
Borinstein, Scott
NCT04142437
VICCPED2071

Studying Health Outcomes after Treatment in Patients with Retinoblastoma, RIVERBOAT Study

Multiple Cancer Types

This trial studies health outcomes after treatment in patients with retinoblastoma. Gathering health information over time from patients and family members through vision assessments, samples of tissue and saliva, and questionnaires may help doctors learn more about what causes retinoblastoma, identify long-term health outcomes for patients with retinoblastoma, and find out which therapies may be the best for treating retinoblastoma.
Pediatrics, Retinoblastoma (Pediatrics)
N/A
Friedman, Debra
NCT03932786
VICCPED1878

Disposable Perfusion Phantom for Accurate DCE-MRI Measurement of Pancreatic Cancer Therapy Response

Pancreatic

This trial tests the use of a disposable perfusion phantom (P4) to decrease errors in calculating the blood flow of a tissue with DCE-MRI. DCE-MRI is used calculate blood flow of various tissues including tumors. Blood flow often serves as a critical indicator showing a disease status. For example, a pancreatic tumor has typically low blood flow, so it can be used as an indicator to identify the presence of a pancreatic tumor. In addition, an effective therapy may result in the increase of blood flow in a pancreatic tumor during the early period of treatment. Therefore, DCE-MRI may be used to determine whether the undergoing therapy is effective or not by measuring the change of blood flow in the pancreatic tumor and may help doctors decide whether to continue the therapy or try a different one. Unfortunately, the measurement of blood flow using DCE-MRI is not accurate. The use of an artificial tissue, named "phantom" or P4, together with a patient may help to reduce errors in DCE-MRI because errors will affect the images of both the patient and the phantom. Because it is known how the blood flow of the phantom appears when no errors are present, the phantom may be used to detect what kinds of errors are present in the image, how many errors are present in the image, and how to remove errors from the image.
Pancreatic
N/A
Xu, Junzhong
NCT04588025
VICCGI2099

Evaluating the Use of Dual Imaging Techniques for Detection of Disease in Patients with Head and Neck Cancer

Phase I

This phase I trial evaluates the safety and effectiveness of using two imaging techniques, indium In 111 panitumumab (111In-panitumumab) with single photon emission computed tomography (SPECT)/computed tomography (CT) and panitumumab-IRDye800 fluorescence imaging during surgery (intraoperative), to detect disease in patients with head and neck cancer. 111In-panitumumab is an imaging agent made of a monoclonal antibody that has been labeled with a radioactive molecule called indium In 111. The agent targets and binds to receptors on tumor cells. This allows the cells to be visualized and assessed with SPECT/CT imaging techniques. SPECT is special type of CT scan in which a small amount of a radioactive drug is injected into a vein and a scanner is used to make detailed images of areas inside the body where the radioactive material is taken up by the cells. CT is an imaging technique for examining structures within the body by scanning them with x-rays and using a computer to construct a series of cross-sectional scans along a single axis. Panitumumab-IRDye800 is an imaging agent composed of panitumumab, a monoclonal antibody, linked to a fluorescent dye called IRDye800. Upon administration, panitumumab-IRDye800 targets and binds to receptors on tumor cells. This allows the tumor cells to be detected using fluorescence imaging during surgery. Adding 111In-panitumumab SPECT/CT imaging to intraoperative panitumumab-IRDye800 fluorescence imaging may be more effective at detecting disease in patients with head and neck cancer.
Phase I
I
Rosenthal, Eben
NCT05945875
VICC-EDHAN23204P

Comparison of Intravesical Therapy and Surgery as Treatment Options for Bladder Cancer, CISTO Study

Bladder

This study compares therapy within the bladder (intravesical therapy) and surgery as treatment options for patients with bladder cancer. Bladder cancer is the fifth most common cancer in the United States, but not enough research is available to help patients decide between the two most common treatments: medical therapies or bladder removal. The purpose of this study is to compare how the two treatments affect patient clinical outcomes and patient and caregiver experiences. This study may help researchers improve the decision-making process about bladder cancer treatments for patients and their caregivers.
Bladder
N/A
Scarpato, Kristen
NCT03933826
VICCURO19105

111In-Panitumumab for Nodal Staging in Patients with Head and Neck Cancer

Multiple Cancer Types

This phase I trial tests the safety and effectiveness of indium In 111 panitumumab (111In-panitumumab) for identifying the first lymph nodes to which cancer has spread from the primary tumor (sentinel lymph nodes) in patients with head and neck squamous cell carcinoma (HNSCC) undergoing surgery. The most important factor for survival for many cancer types is the presence of cancer that has spread to the lymph nodes (metastasis). Lymph node metastases in patients with head and neck cancer reduce the 5-year survival by half. Sometimes, the disease is too small to be found on clinical and imaging exams before surgery. 111In-panitumumab is in a class of medications called radioimmunoconjugates. It is composed of a radioactive substance (indium In 111) linked to a monoclonal antibody (panitumumab). Panitumumab binds to EGFR receptors, a receptor that is over-expressed on the surface of many tumor cells and plays a role in tumor cell growth. Once 111In-panitumumab binds to tumor cells, it is able to be seen using an imaging technique called single photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT can be used to make detailed pictures of the inside of the body and to visualize areas where the radioactive drug has been taken up by the cells. Using 111In-panitumumab with SPECT/CT imaging may improve identification of sentinel lymph nodes in patients with head and neck squamous cell cancer undergoing surgery.
Head/Neck, Phase I
I
Rosenthal, Eben
NCT05901545
VICC-EDHAN23201P

An Imaging Agent (89Zr Panitumumab) with PET/CT for Diagnosing Primary Lesions and/or Metastases in Patients with Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase I trial evaluates the usefulness of an imaging agent (zirconium Zr 89 panitumumab [89Zr panitumumab]) with positron emission tomography (PET)/computed tomography (CT) for diagnosing primary tumors and/or the spread of disease from where it first started (primary site) to other places in the body (metastasis) in patients with head and neck squamous cell carcinoma. 89Zr panitumumab is an investigational imaging agent that contains a small amount of radiation, which makes it visible on PET scans. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of tracer, in the case of this research, 89Zr panitumumab, to allow imaging of the function of different cells and organs in the body. CT utilizes x-rays that traverse the body from the outside. CT images provide an exact outline of organs and potential disease tissue where it occurs in patients body. The combined PET/CT scanner is a special type of scanner that allows imaging of both structure (CT) and function (PET) following the injection of 89Zr panitumumab. This 89Zr panitumumab PET/CT may be useful in diagnosis of primary tumors and/or metastasis in patients with head and neck squamous cell carcinoma.
Head/Neck
I
Topf, Michael
NCT05747625
VICCHN2279

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.