Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

Multiple Cancer Types

This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
Pediatric Leukemia, Pediatrics
III
Zarnegar-Lumley, Sara
NCT03007147
COGAALL1631

A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia

Pediatric Leukemia

This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
Pediatric Leukemia
II
Friedman, Debra
NCT02723994
VICCPED16131

Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients with Down Syndrome

Multiple Cancer Types

This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
Myelodysplastic Syndrome, Pediatric Leukemia
III
Friedman, Debra
NCT02521493
COGAAML1531

Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients with High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy

Multiple Cancer Types

This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, in order to classify patients into post-consolidation treatment groups. On the second part of this study, patients will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
Pediatric Leukemia, Pediatrics
III
Zarnegar-Lumley, Sara
NCT03959085
COGAALL1732

Randomized Trial of Gilteritinib vs Midostaurin in FLT3 Mutated Acute Myeloid Leukemia

Leukemia

Eligible untreated patients with FLT3 acute myeloid leukemia (AML) between the ages of 18 and 65 will be randomized to receive gilteritinib or midostaurin during induction and consolidation. Patients will also receive standard chemotherapy of daunorubicin and cytarabine during induction and high-dose cytarabine during consolidation. Gilteritinib, is an oral drug that works by stopping the leukemia cells from making the FLT3 protein. This may help stop the leukemia cells from growing faster and thus may help make chemotherapy more effective. Gilteritinib has been approved by the Food and Drug Administration (FDA) for patients who have relapsed or refractory AML with a FLT3 mutation but is not approved by the FDA for newly diagnosed FLT3 AML, and its use in this setting is considered investigational. Midostaurin is an oral drug that works by blocking several proteins on cancer cells, including FLT3 that can help leukemia cells grow. Blocking this pathway can cause death to the leukemic cells. Midostaurin is approved by the FDA for the treatment of FLT3 AML. The purpose of this study is to compare the effectiveness of gilteritinib to midostaurin in patients receiving standard combination chemotherapy for FLT3 AML.
Leukemia
II
Strickland, Stephen
NCT03836209
VICCHEM1957

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: