Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Active Myeloid Target Compound Decitabine and Cedazuridine in Combination with Itacitinib for the Treatment of Myelodysplastic/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes, ABNL-MARRO Study

Multiple Cancer Types

This phase I/II trial tests the safety, side effects, and best dose of decitabine and cedazuridine (ASTX727) in combination with itacitinib and how well they work in treating patients with myelodysplastic/ myeloproliferative neoplasm. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Itacitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving decitabine and cedazuridine in combination with itacitinib may work better in treating patients with myelodysplastic/myeloproliferative neoplasm.
Hematologic, Myelodysplastic Syndrome
I/II
Savona, Michael
NCT04061421
VICCHEMP1977

A Study to Evaluate INCA033989 Administered in Participants With Myeloproliferative Neoplasms

Leukemia

This study is being conducted to evaluate the safety, tolerability, dose-limiting toxicity
(DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion
(RDE) of INCA033989 administered in participants with myeloproliferative neoplasms.
Leukemia
I
Savona, Michael
NCT06034002
VICC-DTHEM23416P

First in Human Study of Ziftomenib in Relapsed or Refractory Acute Myeloid Leukemia

Multiple Cancer Types

This first-in-human (FIH) dose-escalation and dose-validation/expansion study will assess
ziftomenib, a menin-MLL(KMT2A) inhibitor, in patients with relapsed or refractory acute
myeloid leukemia (AML) as part of Phase 1. In Phase 2, assessment of ziftomenib will continue
in patients with NPM1-m AML.
Leukemia, Phase I
I/II
Savona, Michael
NCT04067336
VICCHEMP20122

Pharmacokinetics, Safety, and Efficacy of ASTX727 in Combination With Venetoclax in Acute Myeloid Leukemia (AML)

Multiple Cancer Types

The Phase 1 portion of this study is a single-arm, open-label, multicenter, non-randomized
interventional study to evaluate the pharmacokinetic (PK) interaction, safety, and efficacy
of ASTX727 when given in combination with venetoclax for the treatment of newly diagnosed
acute myeloid leukemia (AML) in adults who are age 75 years or older, or who have
comorbidities that preclude use of intensive induction chemotherapy. The primary purpose of
the study is to rule out drug-drug interactions between ASTX727 and venetoclax combination
therapy by evaluating area under the curve (AUC) and maximum plasma concentration (Cmax)
exposure. The Phase 2 portion of the study is to assess the efficacy of ASTX727 and
venetoclax when given in combination and to evaluate potential PK interactions. Phase 2 will
follow the same overall study design as Phase 1 and has two parts, Part A and Part B.
Leukemia, Phase I
I/II
Savona, Michael
NCT04657081
VICCHEMP20102

Testing the Addition of Pembrolizumab, an Immunotherapy Cancer Drug to Olaparib Alone as Therapy for Patients with Pancreatic Cancer That Has Spread with Inherited BRCA Mutations

Pancreatic

This phase II trial studies whether adding pembrolizumab to olaparib (standard of care) works better than olaparib alone in treating patients with pancreatic cancer with germline BRCA1 or BRCA2 mutations that has spread to other places in the body (metastatic). BRCA1 and BRCA2 are human genes that produce tumor suppressor proteins. These proteins help repair damaged deoxyribonucleic acid (DNA) and, therefore, play a role in ensuring the stability of each cells genetic material. When either of these genes is mutated, or altered, such that its protein product is not made or does not function correctly, DNA damage may not be repaired properly. As a result, cells are more likely to develop additional genetic alterations that can lead to some types of cancer, including pancreatic cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Olaparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. The addition of pembrolizumab to the usual treatment of olaparib may help to shrink tumors in patients with metastatic pancreatic cancer with BRCA1 or BRCA2 mutations.
Pancreatic
II
Cardin, Dana
NCT04548752
SWOGGIS2001

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.