Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Evorpacept (ALX148) in Combination With Pembrolizumab in Patients With Advanced Head and Neck Squamous Cell Carcinoma (ASPEN-03)

Head/Neck

A Phase 2 Study of Evorpacept (ALX148) in Combination With Pembrolizumab in Patients With
Advanced Head and Neck Squamous Cell Carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04675294
VICCHN20127

Niraparib and Dostarlimab as Neoadjuvant Treatment for Patients with BRCA-Mutated or PALB2-Mutated Stage I-III Breast Cancer

Breast

This phase II trial studies the effects of niraparib in combination with dostarlimab prior to surgery in treating BRCA-mutated or PALB2-mutated stage I-III breast cancer. Niraparib is a PARP inhibitor, which means that it blocks an enzyme (proteins that help chemical reactions in the body occur) in cells called PARP. PARP helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Dostarlimab stimulates the immune system by blocking the PD-1 pathway. The PD-1 pathway controls the bodys natural immune response, but for some types of cancer, the immune system does not work as it should and is prevented from attacking tumors. Dostarlimab works by blocking the PD-1 pathway, which may help your immune system identify and catch tumor cells. Giving niraparib in combination with dostarlimab may work better against the tumor and maximize tumor shrinkage before surgery.
Breast
II
Abramson, Vandana
NCT04584255
VICCBRE2190

Conditioning SCID Infants Diagnosed Early

Multiple Cancer Types

The investigators want to study if lower doses of chemotherapy will help babies with SCID to
achieve good immunity with less short and long-term risks of complications after
transplantation. This trial identifies babies with types of immune deficiencies that are most
likely to succeed with this approach and offers them transplant early in life before they get
severe infections or later if their infections are under control. It includes only patients
receiving unrelated or mismatched related donor transplants.

The study will test if patients receiving transplant using either a low dose busulfan or a
medium dose busulfan will have immune recovery of both T and B cells, measured by the ability
to respond to immunizations after transplant. The exact regimen depends on the subtype of
SCID the patient has. Donors used for transplant must be unrelated or half-matched related
(haploidentical) donors, and peripheral blood stem cells must be used. To minimize the chance
of graft-versus-host disease (GVHD), the stem cells will have most, but not all, of the T
cells removed, using a newer, experimental approach of a well-established technology. Once
the stem cell transplant is completed, patients will be followed for 3 years. Approximately
9-18 months after the transplant, vaccinations will be administered, and a blood test
measuring whether your child's body has responded to the vaccine will be collected.
Hematologic, Pediatrics
II
Connelly, James
NCT03619551
VICCNCPED18122

Ramucirumab and Trifluridine/Tipiracil or Paclitaxel for the Treatment of Patients with Previously Treated Advanced Gastric or Gastroesophageal Junction Cancer

Gastric/Gastroesophageal

This phase II trial studies the effect of the combination of ramucirumab and trifluridine/tipiracil or paclitaxel in treating patients with previously treated gastric or gastroesophageal junction cancer that has spread to other places in the body (advanced). Ramucirumab may damage tumor cells by targeting new blood vessel formation. Trifluridine/tipiracil is a chemotherapy pill and that may damage tumor cells by damaging their deoxyribonucleic acid (DNA). Paclitaxel may block cell growth by stopping cell division which may kill tumor cells. Giving ramucirumab and trifluridine/tipiracil will not be worse than ramucirumab and paclitaxel in treating gastric or gastroesophageal junction cancer.
Gastric/Gastroesophageal
II
Gibson, Mike
NCT04660760
VICCGI2168

Avelumab with Binimetinib, Sacituzumab Govitecan, or Liposomal Doxorubicin in Treating Patients with Stage IV or Unresectable, Recurrent Triple Negative Breast Cancer

Breast

This phase II trial studies how well the combination of avelumab with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan works in treating patients with triple negative breast cancer that is stage IV or is not able to be removed by surgery (unresectable) and has come back (recurrent). Immunotherapy with checkpoint inhibitors like avelumab require activation of the patient's immune system. This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as TROP2 receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
Breast
II
Abramson, Vandana
NCT03971409
VICCBRE1987

Ruxolitinib in Preventing Breast Cancer in Patients with High Risk and Precancerous Breast Lesions

Breast

This phase II trial studies how well ruxolitinib before surgery works in preventing breast cancer in patients with high risk and precancerous breast conditions. Ruxolitinib may changes the breast cell when administered to participants with precancerous breast conditions. Ruxolitinib may stop the growth of cells by blocking some of the enzymes needed for cell growth.
Breast
II
Meszoely, Ingrid
NCT02928978
VICCBRE1904

Talazoparib for the Treatment of BRCA 1/2 Mutant Metastatic Breast Cancer

Breast

This phase II trial studies how well talazoparib works for the treatment of breast cancer with a BRCA 1 or BRCA 2 gene mutation that has spread to other places in the body (metastatic). Talazoparib is a study drug that inhibits (stops) the normal activity of certain proteins called poly (ADP-ribose) polymerases also called PARPs. PARPs are proteins that help repair deoxyribonucleic acid (DNA) mutations. PARP inhibitors, such as talazoparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. PARPs are needed to repair mistakes that can happen in DNA when cells divide. If the mistakes are not repaired, the defective cell will usually die and be replaced. Cells with mistakes in their DNA that do not die can become tumor cells. Tumor cells may be killed by a study drug, like talazoparib, that stops the normal activity of PARPs. Talazoparib may be effective in the treatment of metastatic breast cancer with BRCA1 or BRCA2 mutations.
Breast
II
Abramson, Vandana
NCT03990896
VICCBRE2265

Acalabrutinib for the Treatment of Chronic Graft Versus Host Disease

Miscellaneous

This phase II trial studies how well acalabrutinib works in treating patients with chronic graft versus host disease. Acalabrutinib may be an effective treatment for graft-versus-host disease caused by a stem cell transplant.
Miscellaneous
II
Kitko, Carrie
NCT04198922
VICCCTT2122

A Study of LSTA1 When Added to Standard of Care Versus Standard of Care Alone in Patients With Advanced Solid Tumors

Multiple Cancer Types

The goal of this clinical trial is to test a new drug plus standard treatment compared with
standard treatment alone in patients with advanced head and neck squamous cell carcinoma and
cholangiocarcinoma.

The main questions it aims to answer are:

- is the new drug plus standard treatment safe and tolerable

- is the new drug plus standard treatment more effective than standard treatment
Gastrointestinal, Head/Neck
II
Heumann, Thatcher
NCT05712356
VICC-DTMDT23185

Nivolumab and Ipilimumab for the Treatment of Patients with Locally Advanced, Metastatic, or Unresectable Liver Cancer

Liver

This phase II trial tests whether nivolumab and ipilimumab works to shrink tumors in patients with liver cancer that has spread to nearby tissue or lymph nodes (locally advanced), has spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Nivolumab and ipilimumab may be effective in killing tumor cells in patients with liver cancer.
Liver
II
Goff, Laura
NCT05199285
VICCGI2277

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.