Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Mismatched Related Donor versus Matched Unrelated Donor Stem Cell Transplantation for Children, Adolescents, and Young Adults with Acute Leukemia or Myelodysplastic Syndrome

Multiple Cancer Types

This phase III trial compares hematopoietic (stem) cell transplantation (HCT) using mismatched related donors (haploidentical [haplo]) versus matched unrelated donors (MUD) in treating children, adolescents, and young adults with acute leukemia or myelodysplastic syndrome (MDS). HCT is considered standard of care treatment for patients with high-risk acute leukemia and MDS. In HCT, patients are given very high doses of chemotherapy or radiation therapy, which is intended to kill cancer cells that may be resistant to more standard doses of chemotherapy; unfortunately, this also destroys the normal cells in the bone marrow, including stem cells. After the treatment, patients must have a healthy supply of stem cells reintroduced or transplanted. The transplanted cells then reestablish the blood cell production process in the bone marrow. The healthy stem cells may come from the blood or bone marrow of a related or unrelated donor. If patients do not have a matched related donor, doctors do not know what the next best donor choice is or if a haplo related donor or MUD is better. This trial may help researchers understand whether a haplo related donor or a MUD HCT for children with acute leukemia or MDS is better or if there is no difference at all.
Leukemia, Myelodysplastic Syndrome, Pediatric Leukemia, Pediatric Lymphoma, Pediatrics
III
Kitko, Carrie
NCT05457556
COGASCT2031

Selinexor and Venetoclax in Combination with Chemotherapy for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or Acute Leukemia of Ambiguous Lineage

Multiple Cancer Types

This phase I trial evaluates the side effects and best dose of selinexor and venetoclax in combination with chemotherapy in treating patients with acute myeloid leukemia or acute leukemia of ambiguous linage that has come back (relapsed) or does not respond to treatment. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Selinexor may stop the growth of cancer cells by blocking CRM1, which help the body's immune system to find and kill cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Colony-stimulating factors, such as granulocyte colony-stimulating factor, may increase the production of blood cells and may help the immune system recover from the side effects of chemotherapy. Giving venetoclax and selinexor with chemotherapy may help control the disease in patients with acute myeloid leukemia or acute leukemia of ambiguous lineage.
Leukemia, Pediatric Leukemia, Pediatrics, Phase I
I
Smith, Brianna
NCT04898894
VICCPEDP2235

Studying the Effect of Levocarnitine in Protecting the Liver from Chemotherapy for Leukemia or Lymphoma

Multiple Cancer Types

This phase III trial compares the effect of adding levocarnitine to standard chemotherapy vs. standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
Leukemia, Pediatric Leukemia
III
Borinstein, Scott
NCT05602194
VICC-NTPED23475

Long-term Follow-up Study for Participants of Kite-Sponsored Interventional Studies Treated With Gene-Modified Cells

Multiple Cancer Types

The goal of this clinical study is to learn more about the long-term safety, effectiveness
and prolonged action of Kite study drugs, axicabtagene ciloleucel, brexucabtagene autoleucel,
KITE-222, KITE-363, KITE-439, KITE-585, and KITE-718, in participants of Kite-sponsored
interventional studies.
Hematologic, Leukemia, Lymphoma, Pediatric Leukemia, Pediatric Lymphoma
N/A
Oluwole, Olalekan
NCT05041309
VICCCTT2170

Hematologic Malignancy Tumor Bank

Multiple Cancer Types

Hematologic, Leukemia, Lymphoma
N/A
Seegmiller, Adam
VICCHEM1217

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.