Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Standard Chemotherapy in Treating Young Patients with Medulloblastoma or Other Central Nervous System Embryonal Tumors

Neuroblastoma (Pediatrics)

This phase IV trial studies how well standard chemotherapy works in treating young patients with medulloblastoma or other central nervous system embryonal tumors. Drugs used in standard chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
Neuroblastoma (Pediatrics)
IV
Esbenshade, Adam
NCT02875314
VICCPED1751

Testing the Use of Steroids and Tyrosine Kinase Inhibitors with Blinatumomab or Chemotherapy for Newly Diagnosed BCR-ABL-Positive Acute Lymphoblastic Leukemia in Adults

Leukemia

This phase III trial compares the effect of usual treatment of chemotherapy and steroids and a tyrosine kinase inhibitor (TKI) to the same treatment plus blinatumomab. Blinatumomab is a Bi-specific T-Cell Engager (BiTE) that may interfere with the ability of cancer cells to grow and spread. The information gained from this study may help researchers determine if combination therapy with steroids, TKIs, and blinatumomab work better than the standard of care.
Leukemia
III
Mohan, Sanjay
NCT04530565
ECOGHEMEA9181

A Study of a New Way to Treat Children and Young Adults with a Brain Tumor Called NGGCT

Multiple Cancer Types

This phase II trial studies the best approach to combine chemotherapy and radiation therapy (RT) based on the patients response to induction chemotherapy in patients with non-germinomatous germ cell tumors (NGGCT) that have not spread to other parts of the brain or body (localized). This study has 2 goals: 1) optimizing radiation for patients who respond well to induction chemotherapy to diminish spinal cord relapses, 2) utilizing higher dose chemotherapy followed by conventional RT in patients who did not respond to induction chemotherapy. Chemotherapy drugs, such as carboplatin, etoposide, ifosfamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays or high-energy protons to kill tumor cells and shrink tumors. Studies have shown that patients with newly-diagnosed localized NGGCT, whose disease responds well to chemotherapy before receiving radiation therapy, are more likely to be free of the disease for a longer time than are patients for whom the chemotherapy does not efficiently eliminate or reduce the size of the tumor. The purpose of this study is to see how well the tumors respond to induction chemotherapy to decide what treatment to give next. Some patients will be given RT to the spine and a portion of the brain. Others will be given high dose chemotherapy and a stem cell transplant before RT to the whole brain and spine. Giving treatment based on the response to induction chemotherapy may lower the side effects of radiation in some patients and adjust the therapy to a more efficient one for other patients with localized NGGCT.
Germ Cell (Pediatrics), Pediatrics
II
Esbenshade, Adam
NCT04684368
COGACNS2021

Decitabine and Cedazuridine in Combination with Venetoclax for the Treatment of Patients who have Relapsed Acute Myeloid Leukemia after Donor Stem Cell Transplant

Leukemia

This phase II trial tests how well decitabine and cedazuridine (DEC-C) works in combination with venetoclax in treating acute myeloid leukemia (AML) in patients whose AML has come back after a period of improvement (relapse) after a donor stem cell transplant. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving DEC-C in combination with venetoclax may kill more cancer cells in patients with relapsed AML.
Leukemia
II
Mohan, Sanjay
NCT05799079
VICCHEM2163

INCB000928 Administered as a Monotherapy or in Combination With Ruxolitinib in Participants With Anemia Due to Myeloproliferative Disorders

Miscellaneous

This Phase 1/2, open-label, dose-finding study is intended to evaluate the safety and
tolerability, PK, PD, and efficacy of INCB000928 administered as monotherapy or in
combination with ruxolitinib in participants with MF who are transfusion-dependent or
presenting with symptomatic anemia. This study will consist of 2 parts: dose escalation and
expansion.
Miscellaneous
I/II
Mohan, Sanjay
NCT04455841
VICCHEMP2051

Study of Selinexor in Combination With Ruxolitinib in Myelofibrosis

Multiple Cancer Types

This is a global, multicenter Phase 1/3 study to evaluate the efficacy and safety of
selinexor plus ruxolitinib in JAK inhibitor (JAKi) treatment-nave myelofibrosis (MF)
participants. The study will be conducted in two phases: Phase 1 (open-label) and Phase 3
(double-blind). Phase 1 (enrollment completed) was an open-label evaluation of the safety and
recommended dose (RD) of selinexor in combination with ruxolitinib and included a dose
escalation using a standard 3+3 design (Phase 1a) and a dose expansion part (Phase 1b). In
Phase 3, JAKi treatment-nave MF participants are enrolled in 2:1 ratio to receive the
combination therapy of selinexor + ruxolitinib or the combination of placebo + ruxolitinib.
Hematologic, Phase I
I/II
Mohan, Sanjay
NCT04562389
VICCHEMP2130

A Study to See if Memantine Protects the Brain during Radiation Therapy Treatment for Primary Central Nervous System Tumors

Multiple Cancer Types

This phase III trial compares memantine to usual treatment in treating patients with primary central nervous system tumors. Memantine may block receptors (parts of nerve cells) in the brain known to contribute to a decline in cognitive function. Giving memantine may make a difference in cognitive function (attention, memory, or other thought processes) in children and adolescents receiving brain radiation therapy to treat a primary central nervous system tumors.
Neuro-Oncology, Pediatrics
III
Esbenshade, Adam
NCT04939597
COGACCL2031

Evaluation of Immunologic Response following COVID-19 Vaccination in Children, Adolescents, and Young Adults with Cancer

Pediatrics

This study evaluates immunologic response following COVID-19 vaccination in children, adolescents, and young adults with cancer. Vaccines work by stimulating the bodys immune cells to respond against a specific disease. The immune response produces protection from that disease. Effects from cancer and from treatments for cancer can reduce the bodys natural disease fighting ability (called immunity). Factors such as vaccine type, timing of vaccine dosing related to treatment for cancer and number of vaccine doses or boosts (extra vaccine shots) may strengthen or diminish the bodys protective immune response. This study may help researchers learn more about how the bodys immune system responds to the COVID-19 vaccine when the vaccination is given during or after cancer treatment.
Pediatrics
N/A
Esbenshade, Adam
NCT05228275
COGACCL21C2

Web-Based Physical Activity Intervention in Improving Long Term Health in Children and Adolescents with Cancer

Multiple Cancer Types

This randomized clinical phase III trial studies how well web-based physical activity intervention works in improving long term health in children and adolescents with cancer. Regular physical activity after receiving treatment for cancer may help to maintain a healthy weight and improve energy levels and overall health.
Pediatric Leukemia, Pediatrics
N/A
Esbenshade, Adam
NCT03223753
COGALTE1631

Infectious Disease Outcomes in Pediatric Oncology Patients

Multiple Cancer Types

Miscellaneous, Pediatrics
N/A
Esbenshade, Adam
VICCPED14127

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.