Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



MRI and 18F-Fluoromisonidazole PET/CT Scan for Assessing Tumor Hypoxia and Guiding Adaptive Radiation Therapy in Patients With Head and Neck Cancer or Brain Metastases

Miscellaneous

This clinical trial is studying how well magnetic resonance imaging (MRI) in combination with 18F-fluoromisonidazole (18F-FMISO) positron emission tomography (PET)/computed tomography (CT) scans works in assessing a decrease in the amount of oxygen (hypoxia) in tumor cells and in guiding adaptive radiation treatment in patients with head and neck cancer or cancer that has spread to the brain from where it first started (brain metastasis). Both head and neck cancer and brain metastases can be treated with radiation. Previous research studies have shown that the amount of oxygen that goes towards cancer cells prior to their radiation treatments predicts how the cancer cells will respond to radiation treatment. MRI is a type of imaging technique that uses radio waves and large magnets to produce detailed images of areas inside the body. 18F-FMISO is a radioactive substance that binds to hypoxic tumor cells and emits radiation, allowing the tumor cells to be visualized using PET/CT, which is an imaging technique that combines PET and CT in a single machine. It is used to make detailed, computerized images of inside the body. By combining MRI with 18F-FMISO PET/CT, researchers may be able to develop an MRI sequence that can be used to evaluate hypoxia in tumor cells and predict response to treatment in patients with head and neck cancer or brain metastases.
Miscellaneous
Early I
De vis, Jill
NCT05996432
VICC-EDMDT23195

Educational Telehealth Program for the Delivery of Care to Cancer Patients in Rural Communities, ENCORE Study

Miscellaneous

This clinical trial evaluates the clinical effectiveness of a multi-level telehealth-based intervention for cancer patients in rural communities. Rural residents face limited accessibility to cancer treatment and supportive care services, transportation barriers, and financial issues. Cancer Thriving and Surviving is an evidence-based self-management intervention with demonstrated efficacy across numerous chronic health conditions with dissemination across the US, inclusive of rural communities. This trial evaluates whether the evidence-based Cancer Thriving and Surviving intervention delivered through telehealth among rural patients may improve patient outcomes.
Miscellaneous
N/A
Friedman, Debra
NCT04758338
VICCPED2013

BXQ-350 Pharmacokinetic/Pharmacodynamic Study in Cancer Patients

Supportive Care

This study will assess pharmacokinetic (PK)/pharmacodynamic (PD) relationships and whether
BXQ-350 may decrease the intensity and/or duration of chemotherapy induced peripheral
neuropathy (CIPN) thereby improving quality of life (QoL) in cancer patients who have been
exposed to oxaliplatin and/or taxane-based chemotherapy. This study includes two randomized,
placebo controlled, blinded treatment cycles of BXQ-350/placebo, an optional open-label
BXQ-350 treatment period, and an unblinded Post-Treatment Follow-up period.
Supportive Care
Early I
Agarwal, Rajiv
NCT05291286
VICC-DTSUP23096

Enhanced Recovery After Surgery for Pain Management in Patients with Extremity Soft Tissue Sarcoma

Sarcoma

This clinical trial studies the effect of the ERAS pain management method in managing pain after surgery in patients with extremity soft tissue sarcoma. Enhanced Recovery After Surgery, or ERAS, is a pain management method that places emphasis on managing risk factors (things like smoking, nutrition and fitness), using multiple types of pain control, and early movement, with the goal of improving patient outcomes. ERAS has been shown to reduce the length of time some patients stay in the hospital, reduce complications from surgery, and even lower costs of some surgeries. ERAS is designed may help cut down on the use of these narcotics in managing the pain of surgery patients. The purpose of this trial is to demonstrate that ERAS is safe and effective for patients having surgery to treat their sarcoma. Specifically, this study will look at using a non-narcotic pain management program that includes other methods of managing the pain of sarcoma surgery patients.
Sarcoma
N/A
Lawrenz, Joshua
NCT04461171
VICCSAR2020

Studying the Effect of Levocarnitine in Protecting the Liver from Chemotherapy for Leukemia or Lymphoma

Multiple Cancer Types

This phase III trial compares the effect of adding levocarnitine to standard chemotherapy vs. standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
Leukemia, Pediatric Leukemia
III
Borinstein, Scott
NCT05602194
VICC-NTPED23475

Impact of Indwelling Tunneled Pleural Drainage Systems (Gravity or Vacuum Based) on Pain in Patients with Recurrent Pleural Effusions

Lung

This trial studies the impact of indwelling tunneled pleural drainage systems (gravity or vacuum based) on pain in patients with plural effusion that has come back (recurrent). Vacuum drainage and gravity drainage are two commonly used drainage methods. Studying the best drainage methods may help future patients undergoing indwelling tunneled pleural catheter placement.
Lung
N/A
Maldonado, Fabien
NCT03831386
VICCTHO19118

A Study of miRNA 371 in Patients with Germ Cell Tumors

Urologic

This trial studies whether the blood marker micro ribonucleic acid (miRNA) 371 can predict the chance of cancer returning in patients with germ cell cancers. Studying samples of blood from patients with germ cell cancers in the laboratory may help doctors predict how likely the cancer will come back.
Urologic
N/A
Rini, Brian
NCT04435756
SWOGUROS1823

Long-term Follow-up Study for Participants of Kite-Sponsored Interventional Studies Treated With Gene-Modified Cells

Multiple Cancer Types

The goal of this clinical study is to learn more about the long-term safety, effectiveness
and prolonged action of Kite study drugs, axicabtagene ciloleucel, brexucabtagene autoleucel,
KITE-222, KITE-363, KITE-439, KITE-585, and KITE-718, in participants of Kite-sponsored
interventional studies.
Hematologic, Leukemia, Lymphoma, Pediatric Leukemia, Pediatric Lymphoma
N/A
Kassim, Adetola
NCT05041309
VICCCTT2170

A Combined Biomarker Model for Risk Stratification of Indeterminate Pulmonary Nodules - A Multicenter Prospective Observational Pilot Study

Lung

This study is being done to evaluate a combined biomarker model for risk stratification of indeterminate pulmonary nodules.
Lung
N/A
Grogan, Eric
NCT06074133
VICC-EDTHO23230

Evaluation of Immunologic Response following COVID-19 Vaccination in Children, Adolescents, and Young Adults with Cancer

Pediatrics

This study evaluates immunologic response following COVID-19 vaccination in children, adolescents, and young adults with cancer. Vaccines work by stimulating the bodys immune cells to respond against a specific disease. The immune response produces protection from that disease. Effects from cancer and from treatments for cancer can reduce the bodys natural disease fighting ability (called immunity). Factors such as vaccine type, timing of vaccine dosing related to treatment for cancer and number of vaccine doses or boosts (extra vaccine shots) may strengthen or diminish the bodys protective immune response. This study may help researchers learn more about how the bodys immune system responds to the COVID-19 vaccine when the vaccination is given during or after cancer treatment.
Pediatrics
N/A
Esbenshade, Adam
NCT05228275
COGACCL21C2

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.