Skip to main content

Displaying 1 - 10 of 97

Nilotinib Plus Dabrafenib/Trametinib or Encorafenib/Binimetinib in Metastatic Melanoma

Multiple Cancer Types

This is a phase 1 dose-escalation study of nilotinib in combination with fixed-dose dabrafenib and trametinib regimen for patients with metastatic or unresectable melanoma carrying a BRAF V600 mutation and have relapsed on a BRAF/MEK inhibitor therapy. The goal is to assess the toxicity and tolerability and determine the maximum tolerated dose (MTD)/recommended phase 2 dose (RP2D) of the combination of nilotinib with dabrafenib and trametinib or with encorafenib and binimetinib. Additionally, this study will assess pharmacokinetic parameters of dabrafenib and nilotinib when used in combination.
Melanoma, Phase I
I
Johnson, Douglas
NCT04903119
VICCMELP2274

Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiotherapy in Patients With Locally Advanced Pancreatic Cancer

Pancreatic

This phase I/II trial studies the safety, side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may be safe, tolerable and/or more effective than radiation therapy alone in treating patients with locally advanced pancreatic cancer.
Pancreatic
I/II
Cardin, Dana
NCT04172532
NCIGIP10366

Testing the Addition of an Anti-Cancer Drug, Triapine, to the Usual Radiation Therapy for Recurrent Glioblastoma or Astrocytoma

Neuro-Oncology

This phase I trial tests the safety, side effects, and best dose of triapine in combination with radiation therapy in treating patients with glioblastoma or astrocytoma that has come back after a period of improvement (recurrent). Triapine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving triapine in combination with radiation therapy may be safe, tolerable, and/or effective in treating patients with recurrent glioblastoma or astrocytoma.
Neuro-Oncology
I
Merrell, Ryan
NCT06860594
VICC-NTNEU24156P

Testing the Combination of New Anti-cancer Drug Peposertib With Avelumab and Radiation Therapy for Advanced/Metastatic Solid Tumors and Hepatobiliary Malignancies

This phase I/II trial studies the best dose and side effects of peposertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving peposertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.
Not Available
I/II
Heumann, Thatcher
NCT04068194
VICC-NTGIT24020

Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy With Radiation After Surgery for Recurrent Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191

Measuring if Immunotherapy Plus Chemotherapy is Better Than Chemotherapy Alone for Patients With Aggressive Poorly Differentiated Sarcomas

This phase III trial compares the effect of immunotherapy (pembrolizumab) plus chemotherapy (doxorubicin) to chemotherapy (doxorubicin) alone in treating patients with dedifferentiated liposarcoma (DDLPS), undifferentiated pleomorphic sarcoma (UPS) or a related poorly differentiated sarcoma that has spread from where it first started (primary site) to other places in the body (metastatic) or that cannot be removed by surgery (unresectable). Doxorubicin is in a class of medications called anthracyclines. Doxorubicin damages the cell's deoxyribonucleic acid (DNA) and may kill tumor cells. It also blocks a certain enzyme needed for cell division and DNA repair. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Adding immunotherapy (pembrolizumab) to the standard chemotherapy (doxorubicin) may help patients with metastatic or unresectable DDLPS, UPS or a related poorly differentiated sarcoma live longer without having disease progression.
Not Available
III
Davis, Elizabeth
NCT06422806
VICC-NTSAR24139

A Study of ASP3082 in Adults With Advanced Solid Tumors

Phase I

This is an open-label study. This means that people in this study and clinic staff will know that they will receive ASP3082. The study aims to check how safe and well-tolerated ASP3082 is for people with advanced solid tumors that have a specific mutation called KRAS G12D.

This study will be in 2 parts.

In Part 1, different small groups of people will receive lower to higher doses of ASP3082 by itself, or together with cetuximab. Any medical problems will be recorded at each dose. This is done to find suitable doses of ASP3082, by itself or together with cetuximab, to use in Part 2 of the study. The first group will receive the lowest dose of ASP3082. A medical expert panel will check the results from this group and decide if the next group can receive a higher dose of ASP3082. The panel will do this for each group until all groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses have been selected for Part 2.

In Part 2, ASP3082 will be given in by itself, or in combination with the other study treatments.

Study treatments will be given through a vein. This is called an infusion. Each treatment cycle is 21 or 28 days long. They will continue treatment until: they have medical problems from the treatment they can't tolerate; their cancer gets worse; they start other cancer treatment; or they ask to stop treatment.
Phase I
I
Berlin, Jordan
NCT05382559
VICCPHI2207

Study of Navtemadlin Add-on to Ruxolitinib in JAK Inhibitor-Nave Patients with Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib

Hematologic

This clinical trial is evaluating whether addition of navtemadlin to ruxolitinib treatment will provide more clinical benefit than ruxolitinib alone for patients with Myelofibrosis who have a suboptimal response to ruxolitinib treatment alone.

Subjects will start by receiving ruxolitinib alone in the run-in period. Those who demostrate a suboptimal response from ruxolitinib alone will then be randomized 2:1 to receive navtemadlin or navtemadlin placebo as add-on treatment to their ongoing ruxolitinib. Randomized means that subjects will be assigned to a group by chance, like a flip of a coin. The study is blinded, meaning the subjects, doctors, central endpoint assessors and sponsor will not know which add on treatment (navtemadlin or navtemadlin placebo) the subject is receiving.
Hematologic
III
Mohan, Sanjay
NCT06479135
VICC-DTHEM24136

Evaluation of RBS2418 in Subjects With Advanced, Metastatic Solid Tumors

Phase I

RBS2418 (investigational product) is a specific immune modulator, working through ectonucleotide pyrophosphatase/phosphodiesterase I (ENPP1), designed to lead to anti-tumor immunity by increasing endogenous 2'-3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) and adenosine triphosphate (ATP levels) and reducing adenosine production in the tumors. RBS2418 has the potential to be an important therapeutic option for subjects both as monotherapy and in combination with other cancer treatments including monotherapy and in combination with other cancer treatments including immunotherapy or chemotherapy. This study is an open-label, multi-site Phase 1a/1b study of RBS2418, a selective ENPP1 inhibitor, in combination with pembrolizumab or other approved anticancer therapies or as a monotherapy in subjects with advanced unresectable, recurrent or metastatic tumors. The phase 1a (dose escalation phase) has been completed. The Phase 1b expansion phase of the study has been increased in size and scope.
Phase I
I
Berlin, Jordan
NCT05270213
VICCPHI2289

Venetoclax in Children With Relapsed Acute Myeloid Leukemia (AML)

Multiple Cancer Types

A study to evaluate if the randomized addition of venetoclax to a chemotherapy backbone (fludarabine/cytarabine/gemtuzumab ozogamicin \[GO\]) improves survival of children/adolescents/young adults with acute myeloid leukemia (AML) in 1st relapse who are unable to receive additional anthracyclines, or in 2nd relapse.
Pediatric Leukemia, Pediatrics
III
Smith, Christine
NCT05183035
VICCPED2237