Skip to main content

Displaying 81 - 90 of 282

Testing the Addition of 131I-MIBG or Lorlatinib to Intensive Therapy in People with High-Risk Neuroblastoma (NBL)

Multiple Cancer Types

This phase III trial studies iobenguane I-131 or lorlatinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Lorlatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or lorlatinib and standard therapy may work better compared to lorlatinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
Neuroblastoma (Pediatrics), Pediatrics
III
Benedetti, Daniel
NCT03126916
COGANBL1531

Irinotecan Hydrochloride, Temozolomide, and Dinutuximab with or without Eflornithine in Treating Patients with Relapsed or Refractory Neuroblastoma

Multiple Cancer Types

This phase II trial studies how well irinotecan hydrochloride, temozolomide, and dinutuximab work with or without eflornithine in treating patients with neuroblastoma that has come back (relapsed) or that isn't responding to treatment (refractory). Drugs used in chemotherapy, such as irinotecan hydrochloride and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Eflornithine blocks the production of chemicals called polyamines that are important in the growth of cancer cells. Giving eflornithine with irinotecan hydrochloride, temozolomide, and dinutuximab, may work better in treating patients with relapsed or refractory neuroblastoma.
Neuroblastoma (Pediatrics), Pediatrics
II
Benedetti, Daniel
NCT03794349
COGANBL1821

A Study to Compare Blinatumomab Alone to Blinatumomab with Nivolumab in Patients Diagnosed with First Relapse B-Cell Acute Lymphoblastic Leukemia (B-ALL)

Multiple Cancer Types

This phase II trial studies the effect of nivolumab in combination with blinatumomab compared to blinatumomab alone in treating patients with B-cell acute lymphoblastic leukemia (B-ALL) that has come back (relapsed). Down syndrome patients with relapsed B-ALL are included in this study. Blinatumomab is an antibody, which is a protein that identifies and targets specific molecules in the body. Blinatumomab searches for and attaches itself to the cancer cell. Once attached, an immune response occurs which may kill the cancer cell. Nivolumab is a medicine that may boost a patients immune system. Giving nivolumab in combination with blinatumomab may cause the cancer to stop growing for a period of time, and for some patients, it may lessen the symptoms, such as pain, that are caused by the cancer.
Pediatric Leukemia, Pediatrics
II
Zarnegar-Lumley, Sara
NCT04546399
COGAALL1821

A Study to Compare Standard Chemotherapy to Therapy with CPX-351 and / or Gilteritinib for Patients with Newly Diagnosed AML with or without FLT3 Mutations

Multiple Cancer Types

This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and / or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and / or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and / or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3 / ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and / or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Leukemia, Pediatric Leukemia, Pediatrics
III
Zarnegar-Lumley, Sara
NCT04293562
COGAAML1831

Berzosertib and Irinotecan in Treating Patients with Progressive, Metastatic, or Unresectable TP53 Mutant Gastric or Gastroesophageal Junction Cancer

Gastric/Gastroesophageal

This phase II trial studies the how well berzosertib and irinotecan work in treating patients with gastric or gastroesophageal junction cancer that is growing, spreading or getting worse (progressive), has spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Berzosertib may stop the growth of tumor cells by blocking some of the enzymes needed for growth. Chemotherapy drugs, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving berzosertib and irinotecan may work better than irinotecan alone in treating patients with gastric and gastroesophageal junction cancer.
Gastric/Gastroesophageal
II
Das, Satya
NCT03641313
VICCNCIGI10211

A Trial of Enzastaurin Plus Temozolomide During and Following Radiation Therapy in Patients With Newly Diagnosed Glioblastoma With or Without the Novel Genomic Biomarker, DGM1

Neuro-Oncology

This study will be conducted as a randomized, double-blind, placebo-controlled, multi-center Phase 3 study. Approximately 300 subjects with newly diagnosed glioblastoma who meet all eligibility criteria will be enrolled.
Neuro-Oncology
III
Merrell, Ryan
NCT03776071
VICCNEU2124

ENVASARC: Envafolimab And Envafolimab With Ipilimumab In Patients With Undifferentiated Pleomorphic Sarcoma Or Myxofibrosarcoma

Sarcoma

This is a multicenter open-label, randomized, non-comparative, parallel cohort pivotal study of treatment with envafolimab (cohort A and C) or envafolimab combined with ipilimumab (cohort B and D) in patients with locally advanced, unresectable or metastatic undifferentiated pleomorphic sarcoma (UPS) / myxofibrosarcoma (MFS) who have progressed on one or two lines of chemotherapy.
Sarcoma
II
Keedy, Vicki
NCT04480502
VICCSAR2076

Study of Efficacy and Safety of Tisagenlecleucel in HR B-ALL EOC MRD Positive Patients

Multiple Cancer Types

This is a single arm, open-label, multi-center, phase II study to determine the efficacy and safety of tisagenlecleucel in de novo HR pediatric and young adult B-ALL patients who received first-line treatment and are EOC MRD positive. The study will have the following sequential phases: screening, pre-treatment, treatment & follow-up, and survival. After tisagenlecleucel infusion, patient will have assessments performed more frequently in the first month and then at Day 29, then every 3 months for the first year, every 6 months for the second year, then yearly until the end of the study. Efficacy and safety will be assessed at study visits and as clinically indicated throughout the study. The study is expected to end in approximately 8 years after first patient first treatment (FPFT). A post-study long term follow-up for lentiviral vector safety will continue under a separate protocol per health authority guidelines.
Leukemia, Pediatric Leukemia
II
Kitko, Carrie
NCT03876769
VICCPED1945

A Study to Evaluate the Effectiveness and Safety of CAEL-101 in Patients With Mayo Stage IIIb AL Amyloidosis

Hematologic

AL (or light chain) amyloidosis begins in the bone marrow where abnormal proteins misfold and create free light chains that cannot be broken down. These free light chains bind together to form amyloid fibrils that build up in the extracellular space of organs, affecting the kidneys, heart, liver, spleen, nervous system and digestive tract. The primary purpose of this study is to determine whether CAEL-101, a monoclonal antibody that removes AL amyloid deposits from tissues and organs, improves overall survival and it is safe and well tolerated in patients with stage IIIb AL amyloidosis.
Hematologic
III
Sengsayadeth, Salyka
NCT04504825
VICCPCL2067

Testing Atezolizumab Alone or Atezolizumab Plus Bevacizumab in People with Advanced Alveolar Soft Part Sarcoma

Sarcoma

This phase II trial studies how well atezolizumab or atezolizumab plus bevacizumab works in treating patients with alveolar soft part sarcoma that has not been treated, has spread from where it started to other places in the body (advanced) and cannot be removed by surgery (unresectable). Atezolizumab works by unblocking the immune system, allowing the immune system cells to recognize and then attack tumor cells. Bevacizumab works by controlling the growth of new blood vessels. Giving atezolizumab alone or atezolizumab with bevacizumab may shrink the cancer.
Sarcoma
II
Davis, Elizabeth
NCT03141684
VICCSAR16155ET-CT