Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Study of INBRX-106 and INBRX-106 in Combination With Pembrolizumab in Subjects With Locally Advanced or Metastatic Solid Tumors (Hexavalent OX40 Agonist)

Phase I

This is a Phase 1/2, open-label, non-randomized, 4-part Phase 1 trial to determine the safety
profile and identify the maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D)
of INBRX 106 administered as a single agent or in combination with the anti-PD-1 checkpoint
inhibitor (CPI) pembrolizumab (Keytruda).
Phase I
I
Davis, Elizabeth
NCT04198766
VICCPHI2135

Savolitinib Plus Osimertinib Versus Platinum-based Doublet Chemotherapy in Participants With Non-Small Cell Lung Cancer Who Have Progressed on Osimertinib Treatment

Multiple Cancer Types

Clinical study to investigate the efficacy and safety of savolitinib in combination with
osimertinib versus platinum-based doublet chemotherapy in participants with EGFR mutated,
MET-overexpressed and/or amplified, locally advanced or metastatic NSCLC who have progressed
on treatment with Osimertinib.
Lung, Non Small Cell
III
Iams, Wade
NCT05261399
VICCTHO2219

FHD-286 as Monotherapy or Combination Therapy in Subjects With Advanced Hematologic Malignancies

Multiple Cancer Types

This Phase 1, multicenter, open-label, dose escalation study is designed to assess the
safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical
activity of FHD-286 administered orally as monotherapy or combination therapy, in subjects
with advanced hematologic malignancies.
Leukemia, Myelodysplastic Syndrome, Phase I
I
Kishtagari, Ashwin
NCT04891757
VICCHEMP2138

A Study of Zilovertamab Vedotin (MK-2140) in Combination With Standard of Care in Participants With Relapsed or Refractory Diffuse Large B-Cell Lymphoma (rrDLBCL) (MK-2140-003)

Lymphoma

The purpose of this Phase 2/3, randomized, multisite, open-label, dose confirmation, and
expansion study is to evaluate the safety, and efficacy of zilovertamab vedotin (ZV) in
combination with standard of care options for the treatment of rrDLBCL. This study will be
divided into 2 parts: Dose Confirmation (Part 1) and Efficacy Expansion (Part 2) and will
enroll participants who are at least 18 years of age with rrDLBCL. The hypotheses are: ZV in
combination with rituximab, gemcitabine, and oxaliplatin (R-GemOx) is superior to R-GemOx
with respect to progression-free survival (PFS) per Lugano response criteria by blinded
independent review committee (BICR); and that ZV in combination with bendamustine rituximab
(BR) is superior to BR with respect to PFS per Lugano response criteria by BICR.
Lymphoma
II/III
Morgan, David
NCT05139017
VICCPCL2228

Total Body Irradiation and Hypofractionated Radiation Therapy with Atezolizumab and Chemotherapy for the Treatment of Extensive-Stage Small Cell Lung Cancer, TESSERACT Trial

Multiple Cancer Types

This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation [TBI]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy [H-RT]) combined with atezolizumab and chemotherapy (carboplatin & etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung, Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206

Active Myeloid Target Compound Decitabine and Cedazuridine in Combination with Itacitinib for the Treatment of Myelodysplastic/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes, ABNL-MARRO Study

Multiple Cancer Types

This phase I/II trial tests the safety, side effects, and best dose of decitabine and cedazuridine (ASTX727) in combination with itacitinib and how well they work in treating patients with myelodysplastic/ myeloproliferative neoplasm. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Itacitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving decitabine and cedazuridine in combination with itacitinib may work better in treating patients with myelodysplastic/myeloproliferative neoplasm.
Hematologic, Myelodysplastic Syndrome
I/II
Savona, Michael
NCT04061421
VICCHEMP1977

Study of KITE-197 in Participants With Relapsed or Refractory Large B-cell Lymphoma

Lymphoma

This study will have two Phases: Phase 1a and Phase 1b. The goal of Phase 1a of this clinical
study is to learn more about the safety, tolerability and dosing of study drug KITE-197, in
participants with relapsed or refractory large B-cell lymphoma (r/rLBCL). The goal of Phase
1b of this clinical study is learn about the effectiveness of the recommended dose of
KITE-197 in participants with r/r LBCL.

The primary objectives of this study are:

Phase 1a: To evaluate the safety of KITE-197 in participants with r/r LBCL and determine the
target dose level for Phase 1b.

Phase 1b: To evaluate the efficacy of KITE-197 in participants with r/r LBCL as measured by
the complete remission (CR) rate.
Lymphoma
I
Jallouk, Andrew
NCT06079164
VICC-DTCTT23136P

Pembrolizumab after Radiation Therapy and Chemotherapy in Treating Patients with Limited Stage Small Cell Lung Cancer

Lung

This phase II trial studies how well pembrolizumab after standard treatment with radiation plus the following chemotherapy drugs: cisplatin or carboplatin, plus etoposide works in treating patients with limited stage small cell lung cancer (LS-SCLC). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab after standard treatment with radiation plus chemotherapy may increase the ability of the immune system to fight LS-SCLC.
Lung
II
Iams, Wade
NCT06140407
VICCTHO22114

Nilotinib, Trametinib, and Dabrafenib for the Treatment of BRAF V600 Mutant Metastatic or Unresectable Melanoma

Multiple Cancer Types

This phase I trial is to find out the best dose, possible benefits and/or side effects of nilotinib given together with trametinib and dabrafenib in treating patients with BRAF V600 mutant melanoma that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). Nilotinib, trametinib, and dabrafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving nilotinib together with trametinib and dabrafenib may lower the chance of cancer growing or spreading.
Melanoma, Phase I
I
Johnson, Douglas
NCT04903119
VICCMELP2274

Evexomostat Plus Alpelisib and Fulvestrant in Women With the PIK3CA Mutation With HR+/Her2- Breast Cancer

The PIK3CA gene is frequently mutated in breast cancer, leading to disease aggressiveness and
patient mortality. Alpelisib, a small molecule that inhibits the activity of the PIK3CA gene
product PI3K, has demonstrated clinical benefit in cancer patients with this gene mutation.
However, hyperglycemia, an on-target toxicity associated with alpelisib that leads to
hyperinsulinemia, limits the drug's clinical efficacy and induces high grade hyperglycemia in
patients with baseline metabolic dysfunction, insulin resistance and/or elevated HbA1c.
Restoring insulin sensitivity and reduction in circulating concentrations of insulin have
been reported to improve the activity of alpelisib.

Evexomostat (SDX-7320) is a polymer-conjugate of a novel small molecule methionine
aminopeptidase 2 (MetAP2) inhibitor that has demonstrated the ability to reduce
alpelisib-induced hyperglycemia in multiple animal experiments and has demonstrated
synergistic anti-tumor activity independent of changes in glucose or insulin. Evexomostat was
well tolerated in a Phase 1 safety study in late-stage cancer patients and showed
improvements in insulin resistance for patients that presented with baseline elevated
insulin. Overall, the most common treatment-emergent adverse events with evexomostat (TEAEs)
were fatigue (44%), decreased appetite (38%), constipation and nausea (each 28%), and
diarrhea (22%). All other TEAEs occurred at an incidence <20%.

The purpose of this study is to characterize the safety of the triplet drug combination
(alpelisib, fulvestrant plus evexomostat), to test whether evexomostat, when given in
combination with alpelisib and fulvestrant will reduce the number and severity of
hyperglycemic events and/or reduce the number of anti-diabetic medications needed to control
the hyperglycemia for patients deemed at risk for alpelisib-induced hyperglycemia (baseline
elevated HbA1c or well-controlled type 2 diabetes), and to assess preliminary anti-tumor
efficacy and changes in key biomarkers and quality of life in this patient population.
Not Available
I/II
Rexer, Brent
NCT05455619
VICCBREP2271

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.