Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Treosulfan-Based Conditioning Regimen before a Blood or Bone Marrow Transplant for the Treatment of Bone Marrow Failure Diseases (BMT CTN 1904)

Multiple Cancer Types

This phase II trial tests whether treosulfan, fludarabine, and rabbit antithymocyte globulin (rATG) work when given before a blood or bone marrow transplant (conditioning regimen) to cause fewer complications for patients with bone marrow failure diseases. Chemotherapy drugs, such as treosulfan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Fludarabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. rATG is used to decrease the body's immune response and may improve bone marrow function and increase blood cell counts. Adding treosulfan to a conditioning regimen with fludarabine and rATG may result in patients having less severe complications after a blood or bone marrow transplant.
Hematologic, Pediatrics
II
Connelly, James
NCT04965597
VICCPED2192

Hormonal Therapy after Pertuzumab and Trastuzumab for the Treatment of Hormone Receptor Positive, HER2 Positive Breast Cancer, the ADEPT study

Breast

This phase II trial studies the effect of hormonal therapy given after (adjuvant) combination pertuzumab/trastuzumab in treating patients with hormone receptor positive, HER2 positive breast cancer. The drugs trastuzumab and pertuzumab are both monoclonal antibodies, which are disease-fighting proteins made by cloned immune cells. Estrogen can cause the growth of breast cancer cells. Hormonal therapy, such as letrozole, anastrozole, exemestane, and tamoxifen, block the use of estrogen by the tumor cells. Giving hormonal therapy after pertuzumab and trastuzumab may kill any remaining tumor cells in patients with breast cancer.
Breast
II
Abramson, Vandana
NCT04569747
VICCBRE2243

Study of XL092 + Atezolizumab vs Regorafenib in Subjects With Metastatic Colorectal Cancer

Multiple Cancer Types

This is a multicenter, randomized, open-label, controlled Phase 3 trial of XL092 +
atezolizumab vs regorafenib in subjects with microsatellite stable/microsatellite instability
low (MSS/MSI-low) metastatic colorectal cancer (mCRC) who have progressed during, after or
are intolerant to standard-of-care (SOC) therapy.
Colon, Rectal
III
Eng, Cathy
NCT05425940
VICC-DTGIT23267

Testing Lutetium Lu 177 Dotatate in Patients with Somatostatin Receptor Positive Advanced Bronchial Neuroendocrine Tumors

Lung

This phase II trial studies the effect of lutetium Lu 177 dotatate compared to the usual treatment (everolimus) in treating patients with somatostatin receptor positive bronchial neuroendocrine tumors that have spread to other places in the body (advanced). Radioactive drugs, such as lutetium Lu 177 dotatate, may carry radiation directly to tumor cells and may reduce harm to normal cells. Lutetium Lu 177 dotatate may be more effective than everolimus in shrinking or stabilizing advanced bronchial neuroendocrine tumors.
Lung
II
Ramirez, Robert
NCT04665739
SWOGTHOA021901

A Study to Evaluate the Efficacy and Safety of Birtamimab in Mayo Stage IV Patients With AL Amyloidosis

Hematologic

A Phase 3 study to evaluate the efficacy and safety of birtamimab plus standard of care
compared to placebo plus standard of care in Mayo Stage IV patients with AL amyloidosis.
Hematologic
III
Baljevic, Muhamed
NCT04973137
VICCPCL22109

A Study of Encorafenib Plus Cetuximab With or Without Chemotherapy in People With Previously Untreated Metastatic Colorectal Cancer

Multiple Cancer Types

The purpose of this study is to evaluate two study medicines (encorafenib plus cetuximab)
taken alone or together with standard chemotherapy for the potential treatment of colorectal
cancer that:

- has spread to other parts of the body (metastatic);

- has a certain type of abnormal gene called "BRAF"; and

- has not received prior treatment.

Participants in this study will receive one of the following study treatments:

- Encorafenib plus cetuximab: These participants will receive encorafenib by mouth at home
every day and cetuximab once every two weeks by intravenous (IV) infusion (an injection
into the vein) at the study clinic.

- Encorafenib plus cetuximab with chemotherapy: These participants will receive
encorafenib and cetuximab in the way described in the bullet above. Additionally, they
will receive standard chemotherapy by IV infusion and oral treatment at home.

- Chemotherapy alone: These participants will receive chemotherapy, the standard treatment
for this condition, by IV infusion at the study clinics and oral treatment at home.

The study team will monitor how each participant responds to the study treatment for up to
about 3 years.
Colon, Rectal
III
Eng, Cathy
NCT04607421
VICCGI2085

Pharmacokinetics, Safety, and Efficacy of ASTX727 in Combination With Venetoclax in Acute Myeloid Leukemia (AML)

Multiple Cancer Types

The Phase 1 portion of this study is a single-arm, open-label, multicenter, non-randomized
interventional study to evaluate the pharmacokinetic (PK) interaction, safety, and efficacy
of ASTX727 when given in combination with venetoclax for the treatment of newly diagnosed
acute myeloid leukemia (AML) in adults who are age 75 years or older, or who have
comorbidities that preclude use of intensive induction chemotherapy. The primary purpose of
the study is to rule out drug-drug interactions between ASTX727 and venetoclax combination
therapy by evaluating area under the curve (AUC) and maximum plasma concentration (Cmax)
exposure. The Phase 2 portion of the study is to assess the efficacy of ASTX727 and
venetoclax when given in combination and to evaluate potential PK interactions. Phase 2 will
follow the same overall study design as Phase 1 and has two parts, Part A and Part B.
Leukemia, Phase I
I/II
Savona, Michael
NCT04657081
VICCHEMP20102

Enasidenib for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia Patients with an IDH2 Mutation

Multiple Cancer Types

This trial studies the side effects of enasidenib and to see how well it works in treating patients with acute myeloid leukemia that has come back after treatment (relapsed) or has been difficult to treat with chemotherapy (refractory). Patients must also have a specific genetic change, also called a mutation, in a protein called IDH2. Enasidenib may stop the growth of cancer cells by blocking the mutated IDH2 protein, which is needed for cell growth.
Pediatric Leukemia, Pediatrics
II
Smith, Brianna
NCT04203316
COGADVL18P1

A Safety and Efficacy Study of Treatment Combinations With and Without Chemotherapy in Adult Participants With Advanced Upper Gastrointestinal Tract Malignancies

Multiple Cancer Types

This is a Phase 2, open-label, parallel 3-cohort, multicenter study to evaluate the safety
and preliminary clinical activity of treatment combinations with and without chemotherapy in
participants with locally advanced unresectable or metastatic gastric, GEJ, and esophageal
adenocarcinoma. Chemotherapy will consist of FOLFOX (oxaliplatin, leucovorin, fluorouracil).
Esophageal, Gastric/Gastroesophageal, Gastrointestinal
II
Gibson, Mike
NCT05329766
VICCGI2240

Testing the Addition of Daratumumab-Hyaluronidase to Enhance Therapeutic Effectiveness of Lenalidomide in Smoldering Multiple Myeloma, The DETER-SMM Trial

Multiple Myeloma

This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab-hyaluronidase in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Anti-inflammatory drugs, such as dexamethasone lower the bodys immune response and are used with other drugs in the treatment of some types of cancer. Daratumumab-hyaluronidase is a monoclonal antibody, daratumumab, that may interfere with the ability of cancer cells to grow and spread, and hyaluronidase, which may help daratumumab work better by making cancer cells more sensitive to the drug. Giving lenalidomide and dexamethasone with daratumumab-hyaluronidase may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.