Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Active Surveillance, Bleomycin, Carboplatin, Etoposide, or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors

Multiple Cancer Types

This phase III trial studies how well active surveillance, bleomycin, carboplatin, etoposide, or cisplatin work in treating pediatric and adult patients with germ cell tumors. Active surveillance may help doctors to monitor subjects with low risk germ cell tumors after their tumor is removed. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
Germ Cell (Pediatrics), Gynecologic, Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531

Erdafitinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with FGFR Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Erdafitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03210714
COGAPEC1621B

PI3K / mTOR Inhibitor LY3023414 in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with TSC or PI3K / MTOR Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well PI3K / mTOR inhibitor LY3023414 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K / MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). PI3K / mTOR inhibitor LY3023414 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213678
COGAPEC1621D

Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients with Relapsed or Refractory Germ Cell Tumors

Multiple Cancer Types

This randomized phase III trial studies how well standard-dose combination chemotherapy works compared to high-dose combination chemotherapy and stem cell transplant in treating patients with germ cell tumors that have returned after a period of improvement (relapsed) or did not respond to treatment (refractory). Chemotherapy drugs, such as paclitaxel, ifosfamide, cisplatin, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Colony-stimulating factors, such as filgrastim or pegfilgrastim, and certain chemotherapy drugs, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. It is not yet known whether high-dose combination chemotherapy and stem cell transplant are more effective than standard-dose combination chemotherapy in treating patients with refractory or relapsed germ cell tumors.
Germ Cell (Pediatrics), Pediatrics
III
Borinstein, Scott
NCT02375204
COGA031102

Larotrectinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with NTRK Fusions (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that have spread to other places in the body and have come back or do not respond to treatment. Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213704
COGAPEC1621A

Vemurafenib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03220035
COGAPEC1621G

Olaparib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03233204
COGAPEC1621H

Ensartinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or do not respond to treatment (refractory) and have spread to other places in the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213652
COGAPEC1621F

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: