Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Evaluating the Use of Dual Imaging Techniques for Detection of Disease in Patients with Head and Neck Cancer

Phase I

This phase I trial evaluates the safety and effectiveness of using two imaging techniques, indium In 111 panitumumab (111In-panitumumab) with single photon emission computed tomography (SPECT)/computed tomography (CT) and panitumumab-IRDye800 fluorescence imaging during surgery (intraoperative), to detect disease in patients with head and neck cancer. 111In-panitumumab is an imaging agent made of a monoclonal antibody that has been labeled with a radioactive molecule called indium In 111. The agent targets and binds to receptors on tumor cells. This allows the cells to be visualized and assessed with SPECT/CT imaging techniques. SPECT is special type of CT scan in which a small amount of a radioactive drug is injected into a vein and a scanner is used to make detailed images of areas inside the body where the radioactive material is taken up by the cells. CT is an imaging technique for examining structures within the body by scanning them with x-rays and using a computer to construct a series of cross-sectional scans along a single axis. Panitumumab-IRDye800 is an imaging agent composed of panitumumab, a monoclonal antibody, linked to a fluorescent dye called IRDye800. Upon administration, panitumumab-IRDye800 targets and binds to receptors on tumor cells. This allows the tumor cells to be detected using fluorescence imaging during surgery. Adding 111In-panitumumab SPECT/CT imaging to intraoperative panitumumab-IRDye800 fluorescence imaging may be more effective at detecting disease in patients with head and neck cancer.
Phase I
I
Rosenthal, Eben
NCT05945875
VICC-EDHAN23204P

111In-Panitumumab for Nodal Staging in Patients with Head and Neck Cancer

Multiple Cancer Types

This phase I trial tests the safety and effectiveness of indium In 111 panitumumab (111In-panitumumab) for identifying the first lymph nodes to which cancer has spread from the primary tumor (sentinel lymph nodes) in patients with head and neck squamous cell carcinoma (HNSCC) undergoing surgery. The most important factor for survival for many cancer types is the presence of cancer that has spread to the lymph nodes (metastasis). Lymph node metastases in patients with head and neck cancer reduce the 5-year survival by half. Sometimes, the disease is too small to be found on clinical and imaging exams before surgery. 111In-panitumumab is in a class of medications called radioimmunoconjugates. It is composed of a radioactive substance (indium In 111) linked to a monoclonal antibody (panitumumab). Panitumumab binds to EGFR receptors, a receptor that is over-expressed on the surface of many tumor cells and plays a role in tumor cell growth. Once 111In-panitumumab binds to tumor cells, it is able to be seen using an imaging technique called single photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT can be used to make detailed pictures of the inside of the body and to visualize areas where the radioactive drug has been taken up by the cells. Using 111In-panitumumab with SPECT/CT imaging may improve identification of sentinel lymph nodes in patients with head and neck squamous cell cancer undergoing surgery.
Head/Neck, Phase I
I
Rosenthal, Eben
NCT05901545
VICC-EDHAN23201P

An Imaging Agent (89Zr Panitumumab) with PET/CT for Diagnosing Primary Lesions and/or Metastases in Patients with Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase I trial evaluates the usefulness of an imaging agent (zirconium Zr 89 panitumumab [89Zr panitumumab]) with positron emission tomography (PET)/computed tomography (CT) for diagnosing primary tumors and/or the spread of disease from where it first started (primary site) to other places in the body (metastasis) in patients with head and neck squamous cell carcinoma. 89Zr panitumumab is an investigational imaging agent that contains a small amount of radiation, which makes it visible on PET scans. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of tracer, in the case of this research, 89Zr panitumumab, to allow imaging of the function of different cells and organs in the body. CT utilizes x-rays that traverse the body from the outside. CT images provide an exact outline of organs and potential disease tissue where it occurs in patients body. The combined PET/CT scanner is a special type of scanner that allows imaging of both structure (CT) and function (PET) following the injection of 89Zr panitumumab. This 89Zr panitumumab PET/CT may be useful in diagnosis of primary tumors and/or metastasis in patients with head and neck squamous cell carcinoma.
Head/Neck
I
Topf, Michael
NCT05747625
VICCHN2279

A Study of ASTX030 (Cedazuridine in Combination With Azacitidine) in MDS, CMML, or AML

Multiple Cancer Types

Study ASTX030-01 is designed to move efficiently from Phase 1 to Phase 3. Phase 1 consists of
an open-label Dose Escalation Stage (Stage A) using multiple cohorts at escalating dose
levels of oral cedazuridine and azacitidine (only one study drug will be escalated at a time)
followed by a Dose Expansion Stage (Stage B) of ASTX030. Phase 2 is a randomized open-label
crossover study to compare oral ASTX030 to subcutaneous (SC) azacitidine. Phase 3 is a
randomized open-label crossover study comparing the final oral ASTX030 dose to SC
azacitidine. The duration of the study is expected to be approximately 48 months.
Leukemia, Myelodysplastic Syndrome, Phase I
I/II/III
Savona, Michael
NCT04256317
VICCHEMP19146

A Study of E7386 in Combination With Other Anticancer Drug in Participants With Solid Tumor

Multiple Cancer Types

The primary objective of this study is to assess the safety and tolerability and to determine
the recommended Phase 2 dose (RP2D) of E7386 in combination with other anticancer drug(s).
Gynecologic, Liver, Phase I
I
Heumann, Thatcher
NCT04008797
VICC-DTPHI23106

Niraparib and Dostarlimab as Neoadjuvant Treatment for Patients with BRCA-Mutated or PALB2-Mutated Stage I-III Breast Cancer

Breast

This phase II trial studies the effects of niraparib in combination with dostarlimab prior to surgery in treating BRCA-mutated or PALB2-mutated stage I-III breast cancer. Niraparib is a PARP inhibitor, which means that it blocks an enzyme (proteins that help chemical reactions in the body occur) in cells called PARP. PARP helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Dostarlimab stimulates the immune system by blocking the PD-1 pathway. The PD-1 pathway controls the bodys natural immune response, but for some types of cancer, the immune system does not work as it should and is prevented from attacking tumors. Dostarlimab works by blocking the PD-1 pathway, which may help your immune system identify and catch tumor cells. Giving niraparib in combination with dostarlimab may work better against the tumor and maximize tumor shrinkage before surgery.
Breast
II
Abramson, Vandana
NCT04584255
VICCBRE2190

Ramucirumab and Trifluridine/Tipiracil or Paclitaxel for the Treatment of Patients with Previously Treated Advanced Gastric or Gastroesophageal Junction Cancer

Gastric/Gastroesophageal

This phase II trial studies the effect of the combination of ramucirumab and trifluridine/tipiracil or paclitaxel in treating patients with previously treated gastric or gastroesophageal junction cancer that has spread to other places in the body (advanced). Ramucirumab may damage tumor cells by targeting new blood vessel formation. Trifluridine/tipiracil is a chemotherapy pill and that may damage tumor cells by damaging their deoxyribonucleic acid (DNA). Paclitaxel may block cell growth by stopping cell division which may kill tumor cells. Giving ramucirumab and trifluridine/tipiracil will not be worse than ramucirumab and paclitaxel in treating gastric or gastroesophageal junction cancer.
Gastric/Gastroesophageal
II
Gibson, Mike
NCT04660760
VICCGI2168

Avelumab with Binimetinib, Sacituzumab Govitecan, or Liposomal Doxorubicin in Treating Patients with Stage IV or Unresectable, Recurrent Triple Negative Breast Cancer

Breast

This phase II trial studies how well the combination of avelumab with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan works in treating patients with triple negative breast cancer that is stage IV or is not able to be removed by surgery (unresectable) and has come back (recurrent). Immunotherapy with checkpoint inhibitors like avelumab require activation of the patient's immune system. This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as TROP2 receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
Breast
II
Abramson, Vandana
NCT03971409
VICCBRE1987

Study to Evaluate Safety, Tolerability, and Optimal Dose of Candidate GBM Vaccine VBI-1901 in Recurrent GBM Subjects

Neuro-Oncology

The purpose of this study is to assess the safety and tolerability of VBI-1901 in subjects
with recurrent malignant gliomas (glioblastoma, or GBM).
Neuro-Oncology
I/II
Merrell, Ryan
NCT03382977
VICCNEUP2234

Ruxolitinib in Preventing Breast Cancer in Patients with High Risk and Precancerous Breast Lesions

Breast

This phase II trial studies how well ruxolitinib before surgery works in preventing breast cancer in patients with high risk and precancerous breast conditions. Ruxolitinib may changes the breast cell when administered to participants with precancerous breast conditions. Ruxolitinib may stop the growth of cells by blocking some of the enzymes needed for cell growth.
Breast
II
Meszoely, Ingrid
NCT02928978
VICCBRE1904

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.