Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A Study of a New Way to Treat Children and Young Adults with a Brain Tumor Called NGGCT

Multiple Cancer Types

This phase II trial studies the best approach to combine chemotherapy and radiation therapy (RT) based on the patients response to induction chemotherapy in patients with non-germinomatous germ cell tumors (NGGCT) that have not spread to other parts of the brain or body (localized). This study has 2 goals: 1) optimizing radiation for patients who respond well to induction chemotherapy to diminish spinal cord relapses, 2) utilizing higher dose chemotherapy followed by conventional RT in patients who did not respond to induction chemotherapy. Chemotherapy drugs, such as carboplatin, etoposide, ifosfamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays or high-energy protons to kill tumor cells and shrink tumors. Studies have shown that patients with newly-diagnosed localized NGGCT, whose disease responds well to chemotherapy before receiving radiation therapy, are more likely to be free of the disease for a longer time than are patients for whom the chemotherapy does not efficiently eliminate or reduce the size of the tumor. The purpose of this study is to see how well the tumors respond to induction chemotherapy to decide what treatment to give next. Some patients will be given RT to the spine and a portion of the brain. Others will be given high dose chemotherapy and a stem cell transplant before RT to the whole brain and spine. Giving treatment based on the response to induction chemotherapy may lower the side effects of radiation in some patients and adjust the therapy to a more efficient one for other patients with localized NGGCT.
Germ Cell (Pediatrics), Pediatrics
II
Esbenshade, Adam
NCT04684368
COGACNS2021

A Study of the Drugs Selumetinib versus Carboplatin/Vincristine in Patients with Neurofibromatosis and Low-Grade Glioma

Multiple Cancer Types

This phase III trial studies if selumetinib works just as well as the standard treatment with carboplatin/vincristine (CV) for subjects with NF1-associated low grade glioma (LGG), and to see if selumetinib is better than CV in improving vision in subjects with LGG of the optic pathway (vision nerves). Selumetinib is a drug that works by blocking some enzymes that low-grade glioma tumor cells need for their growth. This results in killing tumor cells. Drugs used as chemotherapy, such as carboplatin and vincristine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether selumetinib works better in treating patients with NF1-associated low-grade glioma compared to standard therapy with carboplatin and vincristine.
Neuro-Oncology, Pediatrics
III
Pastakia, Devang
NCT03871257
COGACNS1831

A Study to Compare Early Use of Vinorelbine and Maintenance Therapy for Patients with High Risk Rhabdomyosarcoma

Multiple Cancer Types

This phase III trial compares the safety and effect of adding vinorelbine to vincristine, dactinomycin, and cyclophosphamide (VAC) for the treatment of patients with high risk rhabdomyosarcoma (RMS). High risk refers to cancer that is likely to recur (come back) after treatment or spread to other parts of the body. This study will also examine if adding maintenance therapy after VAC therapy, with or without vinorelbine, will help get rid of the cancer and/or lower the chance that the cancer comes back. Vinorelbine and vincristine are in a class of medications called vinca alkaloids. They work by stopping cancer cells from growing and dividing and may kill them. Dactinomycin is a type of antibiotic that is only used in cancer chemotherapy. It works by damaging the cells deoxyribonucleic acid (DNA) and may kill cancer cells. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cells DNA and may kill cancer cells. It may also lower the bodys immune response. Vinorelbine, vincristine, dactinomycin and cyclophosphamide are chemotherapy medications that work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may have the potential to eliminate rhabdomyosarcoma for a long time or for the rest of patients life.
Pediatrics, Sarcoma
III
Borinstein, Scott
NCT04994132
COGARST2031

A Study to Investigate Blinatumomab in Combination with Chemotherapy in Patients with Newly Diagnosed B-Lymphoblastic Leukemia

Multiple Cancer Types

This phase III trial studies how well blinatumomab works in combination with chemotherapy in treating patients with newly diagnosed, standard risk B-lymphoblastic leukemia or B-lymphoblastic lymphoma with or without Down syndrome. Monoclonal antibodies, such as blinatumomab, may induce changes in the bodys immune system and may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as vincristine, dexamethasone, prednisone, prednisolone, pegaspargase, methotrexate, cytarabine, mercaptopurine, doxorubicin, cyclophosphamide, and thioguanine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin decreases the toxic effects of methotrexate. Giving monoclonal antibody therapy with chemotherapy may kill more cancer cells. Giving blinatumomab and combination chemotherapy may work better than combination chemotherapy alone in treating patients with B-ALL. This trial also assigns patients into different chemotherapy treatment regimens based on risk (the chance of cancer returning after treatment). Treating patients with chemotherapy based on risk may help doctors decide which patients can best benefit from which chemotherapy treatment regimens.
Pediatric Leukemia, Pediatric Lymphoma, Pediatrics
III
Smith, Christine
NCT03914625
COGAALL1731

Hypofractionated Radiotherapy followed by Surgery for the Treatment of Soft Tissue Sarcomas

Sarcoma

This phase II trial studies the effect of hypofractionated radiotherapy followed by surgery in treating patients with soft tissue sarcoma. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving hypofractionated radiotherapy followed by surgery may allow patients with sarcomas to be treated in a much more rapid and convenient fashion.
Sarcoma
II
Shinohara, Eric
NCT04506008
VICCSAR2062

Gabapentin plus Ketamine for the Prevention of Acute and Chronic Pain in Patients with Locally Advanced Head and Neck Cancer Undergoing Chemoradiation

Multiple Cancer Types

This phase I/II trial studies the side effects and best dose of a combination of gabapentin and ketamine and to see how well it works to prevent acute and chronic pain in patients receiving chemotherapy and radiation therapy (chemoradiation) for head and neck cancer that has spread to nearby tissue or lymph nodes (locally advanced). Gabapentin is a medication that is commonly used to treat nerve related pain. Specifically, it has been used to treat pain involving the mouth, throat and nasal passages in head and neck cancer patients treated with radiation. Ketamine is a type of general anesthetic that blocks pathways to the brain involved with sensing pain. This trial may help doctors determine how patients tolerate the combination of gabapentin and ketamine and to find the correct dosing for ketamine in those taking gabapentin. This will be the basis for a future, larger study to look at how effective this combination is at reducing and/or preventing pain in head and neck cancer patients.
Head/Neck, Phase I
I/II
Lockney, Natalie
NCT05156060
VICCHNP2173

CIBMTR Research Database

Hematologic

The primary purpose of the Research Database is to have a comprehensive source of
observational data that can be used to study HSC transplantation and cellular therapies.

A secondary purpose of the Research Database is to have a comprehensive source of data to
study marrow toxic injuries.

Objectives:

To learn more about what makes stem cell transplants and cellular therapies work well such
as:

- Determine how well recipients recover from their transplants or cellular therapy;

- Determine how recovery after a transplant or cellular therapy can be improved;

- Determine how a donor's or recipient's genetics impact recipient recovery after a
transplant or cellular therapy;

- Determine how access to transplant or cellular therapy for different groups of patients
can be improved;

- Determine how well donors recover from the collection procedures.
Hematologic
N/A
Kassim, Adetola
NCT01166009
VICCCTT1110

Vincristine Pharmacokinetics in Infants

Pediatrics

This pilot trial compares drug exposure levels using a new method for dosing vincristine in infants and young children compared to the standard dosing method based on body surface area (BSA) in older children. Vincristine is an anticancer drug used to a variety of childhood cancers. The doses anticancer drugs in children must be adjusted based on the size of the child because children vary significantly in size (height, weight, and BSA) and ability to metabolize drugs from infancy to adolescence. The dose of most anticancer drugs is adjusted to BSA, which is calculated from a patients weight and height. However, infants and young children have more severe side effects if the BSA is used to calculate their dose, so new dosing models have to be made to safely give anticancer drugs to the youngest patients. This new method uses a BSA-banded approach to determine the dose. Collecting blood samples before and after a dose of the drug will help researchers determine whether this new vincristine dosing method results in equivalent drug levels in the blood over time in infants and young children compared to older children.
Pediatrics
N/A
Borinstein, Scott
NCT05359237
COGPEPN22P1

MRI and 18F-Fluoromisonidazole PET/CT Scan for Assessing Tumor Hypoxia and Guiding Adaptive Radiation Therapy in Patients With Head and Neck Cancer or Brain Metastases

Miscellaneous

This clinical trial is studying how well magnetic resonance imaging (MRI) in combination with 18F-fluoromisonidazole (18F-FMISO) positron emission tomography (PET)/computed tomography (CT) scans works in assessing a decrease in the amount of oxygen (hypoxia) in tumor cells and in guiding adaptive radiation treatment in patients with head and neck cancer or cancer that has spread to the brain from where it first started (brain metastasis). Both head and neck cancer and brain metastases can be treated with radiation. Previous research studies have shown that the amount of oxygen that goes towards cancer cells prior to their radiation treatments predicts how the cancer cells will respond to radiation treatment. MRI is a type of imaging technique that uses radio waves and large magnets to produce detailed images of areas inside the body. 18F-FMISO is a radioactive substance that binds to hypoxic tumor cells and emits radiation, allowing the tumor cells to be visualized using PET/CT, which is an imaging technique that combines PET and CT in a single machine. It is used to make detailed, computerized images of inside the body. By combining MRI with 18F-FMISO PET/CT, researchers may be able to develop an MRI sequence that can be used to evaluate hypoxia in tumor cells and predict response to treatment in patients with head and neck cancer or brain metastases.
Miscellaneous
Early I
De vis, Jill
NCT05996432
VICC-EDMDT23195

Educational Telehealth Program for the Delivery of Care to Cancer Patients in Rural Communities, ENCORE Study

Miscellaneous

This clinical trial evaluates the clinical effectiveness of a multi-level telehealth-based intervention for cancer patients in rural communities. Rural residents face limited accessibility to cancer treatment and supportive care services, transportation barriers, and financial issues. Cancer Thriving and Surviving is an evidence-based self-management intervention with demonstrated efficacy across numerous chronic health conditions with dissemination across the US, inclusive of rural communities. This trial evaluates whether the evidence-based Cancer Thriving and Surviving intervention delivered through telehealth among rural patients may improve patient outcomes.
Miscellaneous
N/A
Friedman, Debra
NCT04758338
VICCPED2013

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.