Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Active Myeloid Target Compound Decitabine and Cedazuridine in Combination with Itacitinib for the Treatment of Myelodysplastic/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes, ABNL-MARRO Study

Multiple Cancer Types

This phase I/II trial tests the safety, side effects, and best dose of decitabine and cedazuridine (ASTX727) in combination with itacitinib and how well they work in treating patients with myelodysplastic/ myeloproliferative neoplasm. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Itacitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving decitabine and cedazuridine in combination with itacitinib may work better in treating patients with myelodysplastic/myeloproliferative neoplasm.
Hematologic, Myelodysplastic Syndrome
I/II
Savona, Michael
NCT04061421
VICCHEMP1977

Study of KITE-197 in Participants With Relapsed or Refractory Large B-cell Lymphoma

Lymphoma

This study will have two Phases: Phase 1a and Phase 1b. The goal of Phase 1a of this clinical
study is to learn more about the safety, tolerability and dosing of study drug KITE-197, in
participants with relapsed or refractory large B-cell lymphoma (r/rLBCL). The goal of Phase
1b of this clinical study is learn about the effectiveness of the recommended dose of
KITE-197 in participants with r/r LBCL.

The primary objectives of this study are:

Phase 1a: To evaluate the safety of KITE-197 in participants with r/r LBCL and determine the
target dose level for Phase 1b.

Phase 1b: To evaluate the efficacy of KITE-197 in participants with r/r LBCL as measured by
the complete remission (CR) rate.
Lymphoma
I
Jallouk, Andrew
NCT06079164
VICC-DTCTT23136P

Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Patients with Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors

Multiple Cancer Types

This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs.
Colon, Esophageal, Gastric/Gastroesophageal, Gastrointestinal, Liver, Pancreatic, Rectal
IV
Idrees, Kamran
NCT06016855
VICCGI2283

A Study to Compare Treatment with the Drug Selumetinib Alone versus Selumetinib and Vinblastine in Patients with Recurrent or Progressive Low-Grade Glioma

This phase III trial investigates the best dose of vinblastine in combination with selumetinib and the benefit of adding vinblastine to selumetinib compared to selumetinib alone in treating children and young adults with low-grade glioma (a common type of brain cancer) that has come back after prior treatment (recurrent) or does not respond to therapy (progressive). Selumetinib is a drug that works by blocking a protein that lets tumor cells grow without stopping. Vinblastine blocks cell growth by stopping cell division and may kill cancer cells. Giving selumetinib in combination with vinblastine may work better than selumetinib alone in treating recurrent or progressive low-grade glioma.
Not Available
III
Esbenshade, Adam
NCT04576117
COGACNS1931

Pembrolizumab after Radiation Therapy and Chemotherapy in Treating Patients with Limited Stage Small Cell Lung Cancer

Lung

This phase II trial studies how well pembrolizumab after standard treatment with radiation plus the following chemotherapy drugs: cisplatin or carboplatin, plus etoposide works in treating patients with limited stage small cell lung cancer (LS-SCLC). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab after standard treatment with radiation plus chemotherapy may increase the ability of the immune system to fight LS-SCLC.
Lung
II
Whitaker, Ryan
NCT06140407
VICCTHO22114

An Imaging Agent (Panitumumab-IRDye800) for the Detection of Head and Neck Cancer During Surgery

Head/Neck

This phase II trial studies the effect of panitumumab-IRDye800 in detecting head and neck cancer during surgery in patients head and neck cancer. Doctors who perform surgery for head and neck cancer are well-trained in removing all of the cancer that can be seen during the operation; however, there are times when there is cancer that is so small that it cannot be seen by the surgeon. Panitumumab-IRDye800 is a combination of panitumumab and IRDye800CW. Panitumumab works by attaching to the cancer cell in a unique way that allows the drug to get into the cancer tissue. IRDye800CW is an investigational dye that, when tested in the laboratory, helps various characteristics of human tissue show up better when using a special camera. Panitumumab-IRDye800 is a combination of the drug and the dye that attaches to cancer cells and appears to make them visible to the doctor when he or she uses the special camera during the surgery. Giving panitumumab-IRDye800 may help doctors better identify cancer in the operating room.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109

Neuroblastoma Maintenance Therapy Trial

Multiple Cancer Types

Difluoromethylornithine (DFMO) will be used in an open label, single agent, multicenter,
study for patients with neuroblastoma in remission. In this study subjects will receive 730
Days of oral difluoromethylornithine (DFMO) at a dose of 750 mg/m2 250 mg/m2 BID (strata 1,
2, 3, and 4) OR 2500 mg/m2 BID (stratum 1B) on each day of study. This study will focus on
the use of DFMO in high risk neuroblastoma patients that are in remission as a strategy to
prevent recurrence.
Endocrine, Neuroblastoma (Pediatrics), Neuroendocrine, Pediatrics
II
Pastakia, Devang
NCT02679144
VICCPED16157


Non-Chemotherapy Treatment (Ramucirumab plus Pembrolizumab) or Standard Chemotherapy for Treatment of Stage IV or Recurrent Non-Small Cell Lung Cancer Following Immunotherapy, Pragmatica-Lung Trial

Lung

This phase III trial compares the effect of the combination therapy with ramucirumab and pembrolizumab versus standard of care chemotherapy for the treatment of non-small cell lung cancer that is stage IV or that has come back after a period of improvement (recurrent). Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help doctors find out if combination therapy with ramucirumab and pembrolizumab could help patients with stage IV or recurrent non-small cell lung cancer live longer compared to standard chemotherapy.
Lung
III
Iams, Wade
NCT05633602
VICC-NTTHO23073

Testing the Use of Combination Therapy in Adult Patients with Newly Diagnosed Multiple Myeloma, the EQUATE Trial

Multiple Myeloma

This phase III trial compares the combination of four drugs (daratumumab-hyaluronidase, bortezomib, lenalidomide and dexamethasone) to the use of a three-drug combination (daratumumab-hyaluronidase, lenalidomide and dexamethasone) in patients with newly diagnosed multiple myeloma. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Daratumumab-hyaluronidase is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Anti-inflammatory drugs, such as dexamethasone lower the bodys immune response and are used with other drugs in the treatment of some types of cancer. Adding bortezomib to daratumumab-hyaluronidase, lenalidomide, and dexamethasone may be more effective in shrinking the cancer or preventing it from returning, compared to continuing on a combination of daratumumab-hyaluronidase, lenalidomide, and dexamethasone in patients with newly diagnosed multiple myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT04566328
ECOGPCLEAA181

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.