Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Phase 1 Study of Oral TP-1454

Multiple Cancer Types

This study will evaluate the safety and tolerability of oral TP-1454 in patients with
advanced metastatic or progressive solid tumors and anal cancer.
Kidney (Renal Cell), Phase I
I
Eng, Cathy
NCT04328740
VICCGIP2286

Vorinostat in Preventing Graft Versus Host Disease in Children, Adolescents, and Young Adults Undergoing Blood and Bone Marrow Transplant

Multiple Cancer Types

This phase I/II trial studies the side effects and best dose of vorinostat in preventing graft versus host disease in children, adolescents, and young adults who are undergoing unrelated donor blood and bone marrow transplant. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells, called graft-versus-host disease. During this process, chemicals (called cytokines) are released that may damage certain body tissues, including the gut, liver and skin. Vorinostat may be an effective treatment for graft-versus-host disease caused by a bone marrow transplant.
Hematologic, Pediatric Leukemia, Pediatric Lymphoma
I/II
Kitko, Carrie
NCT03842696
VICCPED2133

A Study of Immune Checkpoint Inhibitor Combinations With Axitinib in Participants With Untreated Locally Advanced Unresectable or Metastatic Renal Cell Carcinoma

Kidney (Renal Cell)

This study will evaluate the efficacy, safety, and pharmacokinetics of tobemstomig (also
known as RO7247669) in combination with axitinib alone or with tiragolumab (anti-TIGIT) and
axitinib, as compared to pembrolizumab and axitinib in participants with previously
untreated, unresectable locally advanced or metastatic clear-cell renal cell carcinoma
(ccRCC).
Kidney (Renal Cell)
II
Rini, Brian
NCT05805501
VICCURO22113

Genetic Testing to Select Therapy for the Treatment of Advanced or Metastatic Kidney Cancer, OPTIC RCC Study

Kidney (Renal Cell)

This phase II trial tests whether using genetic testing of tumor tissue to select the optimal treatment regimen works in treating patients with clear cell renal cell (kidney) cancer that has spread to other places in the body (advanced or metastatic). The current Food and Drug Administration (FDA)-approved regimens for advanced kidney cancer fall into two categories. One treatment combination includes two immunotherapy drugs (nivolumab plus ipilimumab), which are delivered by separate intravenous infusions into a vein. The other combination is one immunotherapy drug (nivolumab infusion) plus an oral pill taken by mouth (cabozantinib). Nivolumab and ipilimumab are immunotherapies which release the brakes of the immune system, thus allowing the patient's own immune system to better kill cancer cells. Cabozantinib is a targeted therapy specifically designed to block certain biological mechanisms needed for growth of cancer cells. In kidney cancer, cabozantinib blocks a tumors blood supply. The genetic (DNA) makeup of the tumor may affect how well it responds to therapy. Testing the makeup (genes) of the tumor, may help match a treatment (from one of the above two treatment options) to the specific cancer and increase the chance that the disease will respond to treatment. The purpose of this study is to learn if genetic testing of tumor tissue may help doctors select the optimal treatment regimen to which advanced kidney cancer is more likely to respond.
Kidney (Renal Cell)
II
Rini, Brian
NCT05361720
VICCURO21103

A Study to Evaluate MEDI5752 and Axitinib in Subjects With Advanced Renal Cell Carcinoma

Multiple Cancer Types

The purpose of this study is to evaluate MEDI5752 in combination with Lenvatinib (or
Axitinib), in subjects with advanced renal cell carcinoma.
Kidney (Renal Cell), Phase I
I
Rini, Brian
NCT04522323
VICCUROP2043

Ipilimumab, Nivolumab, and Ciforadenant as First-Line Therapy for Stage IV Renal Cell Carcinoma

Multiple Cancer Types

This phase 1b/2 trial tests the safety, side effects, and best dose of ciforadenant in combination with ipilimumab and nivolumab as initial (first-line) therapy for patients with stage IV renal cell carcinoma. Ciforadenant may stimulate the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ciforadenant in combination with ipilimumab and nivolumab may help control the disease.
Kidney (Renal Cell), Phase I
I/II
Beckermann, Kathryn
NCT05501054
VICCUROP22122

Mismatched Related Donor versus Matched Unrelated Donor Stem Cell Transplantation for Children, Adolescents, and Young Adults with Acute Leukemia or Myelodysplastic Syndrome

Multiple Cancer Types

This phase III trial compares hematopoietic (stem) cell transplantation (HCT) using mismatched related donors (haploidentical [haplo]) versus matched unrelated donors (MUD) in treating children, adolescents, and young adults with acute leukemia or myelodysplastic syndrome (MDS). HCT is considered standard of care treatment for patients with high-risk acute leukemia and MDS. In HCT, patients are given very high doses of chemotherapy or radiation therapy, which is intended to kill cancer cells that may be resistant to more standard doses of chemotherapy; unfortunately, this also destroys the normal cells in the bone marrow, including stem cells. After the treatment, patients must have a healthy supply of stem cells reintroduced or transplanted. The transplanted cells then reestablish the blood cell production process in the bone marrow. The healthy stem cells may come from the blood or bone marrow of a related or unrelated donor. If patients do not have a matched related donor, doctors do not know what the next best donor choice is or if a haplo related donor or MUD is better. This trial may help researchers understand whether a haplo related donor or a MUD HCT for children with acute leukemia or MDS is better or if there is no difference at all.
Leukemia, Myelodysplastic Syndrome, Pediatric Leukemia, Pediatric Lymphoma, Pediatrics
III
Kitko, Carrie
NCT05457556
COGASCT2031

Enasidenib for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia Patients with an IDH2 Mutation

Multiple Cancer Types

This trial studies the side effects of enasidenib and to see how well it works in treating patients with acute myeloid leukemia that has come back after treatment (relapsed) or has been difficult to treat with chemotherapy (refractory). Patients must also have a specific genetic change, also called a mutation, in a protein called IDH2. Enasidenib may stop the growth of cancer cells by blocking the mutated IDH2 protein, which is needed for cell growth.
Pediatric Leukemia, Pediatrics
II
Smith, Brianna
NCT04203316
COGADVL18P1

Venetoclax in Children With Relapsed Acute Myeloid Leukemia (AML)

Multiple Cancer Types

A study to evaluate if the randomized addition of venetoclax to a chemotherapy backbone
(fludarabine/cytarabine/gemtuzumab ozogamicin [GO]) improves survival of
children/adolescents/young adults with acute myeloid leukemia (AML) in 1st relapse who are
unable to receive additional anthracyclines, or in 2nd relapse.
Pediatric Leukemia, Pediatrics
III
Smith, Christine
NCT05183035
VICCPED2237

Selinexor and Venetoclax in Combination with Chemotherapy for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or Acute Leukemia of Ambiguous Lineage

Multiple Cancer Types

This phase I trial evaluates the side effects and best dose of selinexor and venetoclax in combination with chemotherapy in treating patients with acute myeloid leukemia or acute leukemia of ambiguous linage that has come back (relapsed) or does not respond to treatment. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Selinexor may stop the growth of cancer cells by blocking CRM1, which help the body's immune system to find and kill cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Colony-stimulating factors, such as granulocyte colony-stimulating factor, may increase the production of blood cells and may help the immune system recover from the side effects of chemotherapy. Giving venetoclax and selinexor with chemotherapy may help control the disease in patients with acute myeloid leukemia or acute leukemia of ambiguous lineage.
Leukemia, Pediatric Leukemia, Pediatrics, Phase I
I
Smith, Brianna
NCT04898894
VICCPEDP2235

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.