Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Study of ISB 1342, a CD38/CD3 Bispecific Antibody, in Subjects With Previously Treated Multiple Myeloma
Multiple Myeloma
Multiple Myeloma
The purpose of this study is to assess safety, efficacy, pharmacokinetic (PK)/pharmacodynamic
(PD), and immunogenicity with ISB 1342 in subjects with relapsed/refractory multiple myeloma.
(PD), and immunogenicity with ISB 1342 in subjects with relapsed/refractory multiple myeloma.
Multiple Myeloma
I
Mohan, Sanjay
NCT03309111
VICCHEMP17111
A Study of Ceralasertib Monotherapy and Ceralasertib Plus Durvalumab in Patients With Melanoma and Resistance to PD-(L)1 Inhibition
Melanoma
Melanoma
Main study: This is an open-label, phase 2 study that aims to evaluate the efficacy and
safety/tolerability of ceralasertib, when administered as monotherapy and in combination with
durvalumab in participants with unresectable or advanced melanoma and primary or secondary
resistance to PD-(L)1 inhibition.
safety/tolerability of ceralasertib, when administered as monotherapy and in combination with
durvalumab in participants with unresectable or advanced melanoma and primary or secondary
resistance to PD-(L)1 inhibition.
Melanoma
II
Johnson, Douglas
NCT05061134
VICCMEL2177
A Study of Talquetamab and Teclistamab Each in Combination With a Programmed Cell Death Receptor-1 (PD-1) Inhibitor for the Treatment of Participants With Relapsed or Refractory Multiple Myeloma
Multiple Cancer Types
The purpose of the study is to identify the safe dose(s) of a PD-1 inhibitor in combination
with talquetamab or teclistamab, and to characterize the safety and tolerability of
talquetamab or teclistamab when administered in combination with a PD-1 inhibitor.
with talquetamab or teclistamab, and to characterize the safety and tolerability of
talquetamab or teclistamab when administered in combination with a PD-1 inhibitor.
Multiple Myeloma,
Phase I
I
Baljevic, Muhamed
NCT05338775
VICCHEMP2253
Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)
Multiple Cancer Types
This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.
Lymphoma,
Miscellaneous,
Pediatric Solid Tumors
N/A
Borinstein, Scott
NCT03155620
COGAPEC1621SC
The Pediatric Acute Leukemia (PedAL) Screening Trial - A Study to Test Bone Marrow and Blood in Children with Leukemia That Has Come Back After Treatment or Is Difficult to Treat - A Leukemia & Lymphoma Society and Childrens Oncology Group Study
Multiple Cancer Types
This study aims to use clinical and biological characteristics of acute leukemias to screen for patient eligibility for available pediatric leukemia sub-trials. Testing bone marrow and blood from patients with leukemia that has come back after treatment or is difficult to treat may provide information about the patient's leukemia that is important when deciding how to best treat it, and may help doctors find better ways to diagnose and treat leukemia in children, adolescents, and young adults.
Pediatric Leukemia,
Pediatric Lymphoma,
Pediatrics
N/A
Zarnegar-Lumley, Sara
NCT04726241
COGAPAL2020SC
Digital Tomosynthesis Mammography and Digital Mammography in Screening Patients for Breast Cancer
Breast
Breast
This randomized phase III trial studies digital tomosynthesis mammography and digital mammography in screening patients for breast cancer. Screening for breast cancer with tomosynthesis mammography may be superior to digital mammography for breast cancer screening and may help reduce the need for additional imaging or treatment.
Breast
III
Harvey, Sara
NCT03233191
ECOGBREEA1151
Disposable Perfusion Phantom for Accurate DCE-MRI Measurement of Pancreatic Cancer Therapy Response
Pancreatic
Pancreatic
This trial tests the use of a disposable perfusion phantom (P4) to decrease errors in calculating the blood flow of a tissue with DCE-MRI. DCE-MRI is used calculate blood flow of various tissues including tumors. Blood flow often serves as a critical indicator showing a disease status. For example, a pancreatic tumor has typically low blood flow, so it can be used as an indicator to identify the presence of a pancreatic tumor. In addition, an effective therapy may result in the increase of blood flow in a pancreatic tumor during the early period of treatment. Therefore, DCE-MRI may be used to determine whether the undergoing therapy is effective or not by measuring the change of blood flow in the pancreatic tumor and may help doctors decide whether to continue the therapy or try a different one. Unfortunately, the measurement of blood flow using DCE-MRI is not accurate. The use of an artificial tissue, named "phantom" or P4, together with a patient may help to reduce errors in DCE-MRI because errors will affect the images of both the patient and the phantom. Because it is known how the blood flow of the phantom appears when no errors are present, the phantom may be used to detect what kinds of errors are present in the image, how many errors are present in the image, and how to remove errors from the image.
Pancreatic
N/A
Xu, Junzhong
NCT04588025
VICCGI2099
111In-Panitumumab for Nodal Staging in Patients with Head and Neck Cancer
Multiple Cancer Types
This phase I trial tests the safety and effectiveness of indium In 111 panitumumab (111In-panitumumab) for identifying the first lymph nodes to which cancer has spread from the primary tumor (sentinel lymph nodes) in patients with head and neck squamous cell carcinoma (HNSCC) undergoing surgery. The most important factor for survival for many cancer types is the presence of cancer that has spread to the lymph nodes (metastasis). Lymph node metastases in patients with head and neck cancer reduce the 5-year survival by half. Sometimes, the disease is too small to be found on clinical and imaging exams before surgery. 111In-panitumumab is in a class of medications called radioimmunoconjugates. It is composed of a radioactive substance (indium In 111) linked to a monoclonal antibody (panitumumab). Panitumumab binds to EGFR receptors, a receptor that is over-expressed on the surface of many tumor cells and plays a role in tumor cell growth. Once 111In-panitumumab binds to tumor cells, it is able to be seen using an imaging technique called single photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT can be used to make detailed pictures of the inside of the body and to visualize areas where the radioactive drug has been taken up by the cells. Using 111In-panitumumab with SPECT/CT imaging may improve identification of sentinel lymph nodes in patients with head and neck squamous cell cancer undergoing surgery.
Head/Neck,
Phase I
I
Rosenthal, Eben
NCT05901545
VICC-EDHAN23201P
An Imaging Agent (89Zr Panitumumab) with PET/CT for Diagnosing Metastases in Patients with Head and Neck Squamous Cell Carcinoma
Head/Neck
Head/Neck
This phase I trial evaluates the usefulness of an imaging agent (zirconium Zr 89 panitumumab [89Zr panitumumab]) with positron emission tomography (PET)/computed tomography (CT) for diagnosing the spread of disease from where it first started (primary site) to other places in the body (metastasis) in patients with head and neck squamous cell carcinoma. 89Zr panitumumab is an investigational imaging agent that contains a small amount of radiation, which makes it visible on PET scans. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of tracer, in the case of this research, 89Zr panitumumab, to allow imaging of the function of different cells and organs in the body. CT utilizes x-rays that traverse the body from the outside. CT images provide an exact outline of organs and potential disease tissue where it occurs in patients body. The combined PET/CT scanner is a special type of scanner that allows imaging of both structure (CT) and function (PET) following the injection of 89Zr panitumumab. This 89Zr panitumumab PET/CT may be useful in diagnosis metastasis in patients with head and neck squamous cell carcinoma.
Head/Neck
I
Topf, Michael
NCT05747625
VICCHN2279
A Study to Compare Standard Chemotherapy to Therapy with CPX-351 and/or Gilteritinib for Patients with Newly Diagnosed AML with or without FLT3 Mutations
Multiple Cancer Types
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Leukemia,
Pediatric Leukemia,
Pediatrics
III
Zarnegar-Lumley, Sara
NCT04293562
COGAAML1831