Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Comparison of Chemotherapy before and after Surgery versus after Surgery Alone for the Treatment of Gallbladder Cancer, OPT-IN Trial

Gastrointestinal

This phase II/III trial compares the effect of adding chemotherapy before and after surgery versus after surgery alone (usual treatment) in treating patients with stage II-III gallbladder cancer. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before surgery may make the tumor smaller; therefore, may reduce the extent of surgery. Additionally, it may make it easier for the surgeon to distinguish between normal and cancerous tissue. Giving chemotherapy after surgery may kill any remaining tumor cells. This study will determine whether giving chemotherapy before surgery increases the length of time before the cancer may return and whether it will increase a patients life span compared to the usual approach.
Gastrointestinal
II/III
Goff, Laura
NCT04559139
ECOGGIEA2197

Testing the Addition of Pembrolizumab, an Immunotherapy Cancer Drug to Olaparib Alone as Therapy for Patients with Pancreatic Cancer That Has Spread with Inherited BRCA Mutations

Pancreatic

This phase II trial studies whether adding pembrolizumab to olaparib (standard of care) works better than olaparib alone in treating patients with pancreatic cancer with germline BRCA1 or BRCA2 mutations that has spread to other places in the body (metastatic). BRCA1 and BRCA2 are human genes that produce tumor suppressor proteins. These proteins help repair damaged deoxyribonucleic acid (DNA) and, therefore, play a role in ensuring the stability of each cells genetic material. When either of these genes is mutated, or altered, such that its protein product is not made or does not function correctly, DNA damage may not be repaired properly. As a result, cells are more likely to develop additional genetic alterations that can lead to some types of cancer, including pancreatic cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Olaparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. The addition of pembrolizumab to the usual treatment of olaparib may help to shrink tumors in patients with metastatic pancreatic cancer with BRCA1 or BRCA2 mutations.
Pancreatic
II
Cardin, Dana
NCT04548752
SWOGGIS2001

Testing the Addition of Nivolumab to Standard Treatment for Patients with Metastatic or Unresectable Colorectal Cancer that have a BRAF Mutation

Multiple Cancer Types

This phase II trial tests whether adding nivolumab to the usual treatment (encorafenib and cetuximab) works better than the usual treatment alone to shrink tumors in patients with colorectal cancer that has spread to other places in the body (metastatic) or that cannot be removed by surgery (unresectable) and whose tumor has a mutation in a gene called BRAF. Encorafenib is in a class of medications called kinase inhibitors. It is used in patients whose cancer has a certain mutation (change) in the BRAF gene. It works by blocking the action of mutated BRAF that signals cancer cells to multiply. This helps to stop or slow the spread of cancer cells. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab in combination with encorafenib and cetuximab may be more effective than encorafenib and cetuximab alone at stopping tumor growth and spreading in patients with metastatic or unresectable BRAF-mutant colorectal cancer.
Colon, Rectal
II
Eng, Cathy
NCT05308446
SWOGGIS2107

Active Surveillance, Bleomycin, Etoposide, Carboplatin or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors

Multiple Cancer Types

This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumors has spread outside of the organ in which it developed, it is considered metastatic. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.
Germ Cell (Pediatrics), Gynecologic, Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531

Two Studies for Patients with Unfavorable Intermediate Risk Prostate Cancer Testing Less Intense Treatment for Patients with a Low Gene Risk Score and Testing a More Intense Treatment for Patients with a Higher Gene Risk Score, The Guidance Trial

Prostate

This phase III trial uses the Decipher risk score to guide therapy selection. Decipher score is based on the activity of 22 genes in prostate tumor and may predict how likely it is for recurrent prostate cancer to spread (metastasize) to other parts of the body. Decipher score in this study is used for patient selection and the two variations of treatment to be studied: intensification for higher Decipher score or de-intensification for low Decipher score. Patients with higher Decipher risk score will be assigned to the part of the study that compares the use of 6 months of the usual treatment (hormone therapy and radiation treatment) to the use of darolutamide plus the usual treatment (intensification). The purpose of this section of the study is to determine whether the additional drug can reduce the chance of cancer coming back and spreading in patients with higher Decipher score. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading. Alternatively, patients with low Decipher risk score will be assigned to the part of the study that compares the use of radiation treatment alone (de-intensification) to the usual approach (6 months of hormone therapy plus radiation). The purpose of this part of the study is to determine if radiation treatment alone is as effective compared to the usual treatment without affecting the chance of tumor coming back in patients with low Decipher score prostate cancer. Radiation therapy uses high energy to kill tumor cells and reduce the tumor size. Hormone therapy drugs such as darolutamide suppress or block the production or action of male hormones that play role in prostate cancer development. Effect of radiation treatment alone in patients with low Decipher score prostate cancer could be the same as the usual approach in stabilizing prostate cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy.
Prostate
III
Kirschner, Austin
NCT05050084
VICC-NTURO23322

EA2176: Phase 3 Clinical Trial of Carboplatin and Paclitaxel +/- Nivolumab in Metastatic Anal Cancer Patients

Rectal

This phase 3 trial compares the addition of nivolumab to chemotherapy (carboplatin and paclitaxel) versus usual treatment (chemotherapy alone) for the treatment of anal cancer that has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab together with carboplatin and paclitaxel may help doctors find out if the treatment is better or the same as the usual approach.
Rectal
III
Eng, Cathy
NCT04444921
ECOGGIEA2176

Comparing the Outcome of Standard Systemic Therapy Only versus Standard Systemic therapy with either Surgery or Radiation Therapy, for Patients with Advanced Prostate cancer

Prostate

This phase III trial compare the effects of adding definitive treatment (either radiation therapy or prostate removal surgery) to standard systemic therapy in treating patients with prostate cancer that has spread to other places in the body (advanced). Removing the prostate by either surgery or radiation therapy in addition to standard systemic therapy for prostate cancer may lower the chance of the cancer growing or spreading.
Prostate
III
Schaffer, Kerry
NCT03678025
SWOGUROS1802

T-DM1 and Tucatinib Compared with T-DM1 Alone in Preventing Relapses in People with High Risk HER2-Positive Breast Cancer, the CompassHER2 RD Trial

Breast

This phase III trial compares the effect of usual treatment with trastuzumab emtansine (T-DM1) alone vs. T-DM1 in combination with tucatinib. T-DM1 is a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug, called DM1. Trastuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors, and delivers DM1 to kill them. Tucatinib blocks HER2, which may help keep cancer cells from growing and may kill them. Giving T-DM1 in combination with tucatinib may work better in preventing breast cancer from relapsing in patients with HER2 positive breast cancer compared to T-DM1 alone.
Breast
III
Abramson, Vandana
NCT04457596
SWOGBREA011801

Chemoradiotherapy with or without Atezolizumab in Treating Patients with Localized Muscle Invasive Bladder Cancer

Bladder

This phase III trial studies how well chemotherapy and radiation therapy work with or without atezolizumab in treating patients with localized muscle invasive bladder cancer. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as gemcitabine, cisplatin, fluorouracil and mitomycin-C, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with radiation therapy may kill more tumor cells. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving atezolizumab with radiation therapy and chemotherapy may work better in treating patients with localized muscle invasive bladder cancer compared to radiation therapy and chemotherapy without atezolizumab.
Bladder
III
Kirschner, Austin
NCT03775265
SWOGUROS1806

Using Cancer Cells in the Blood (ctDNA) to Determine the Type of Chemotherapy that will Benefit Patients who Have Had Surgery for Colon Cancer, (CIRCULATE-NORTH AMERICA)

Multiple Cancer Types

This phase II/III trial aims to determine the type of chemotherapy that will benefit patients who have had surgery for their stage II or III colon cancer based on presence or absence of circulating tumor deoxyribonucleic acid (ctDNA). In ctDNA positive patients, this trial compares the effect of usual chemotherapy versus mFOLFIRINOX. In ctDNA negative patients, this trial compares the effect of usual chemotherapy versus ctDNA testing every 3 months to determine which approach might be better to prevent colon cancer from returning. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It works by damaging cells DNA and may kill cancer cells. Leucovorin is in a class of medications called folic acid analogs. It works by protecting healthy cells from the effects of chemotherapy medications while allowing chemotherapy agent to enter and kill cancer cells. Fluorouracil is in a class of medications called antimetabolites. It stops cells from making DNA and may slow or stop the growth of cancer cells. Capecitabine is in a class of medications called antimetabolites. It Is taken up by cancer cells and breaks down to a substance that kills cancer cells. Irinotecan is in a class of antineoplastic medications called topoisomerase I inhibitors. It works by stopping the growth of cancer cells. This trial may help doctors determine what kind of chemotherapy to recommend to colon cancer patients based on the presence or absence of ctDNA after surgery for colon cancer.
Colon, Rectal
II/III
Ciombor, Kristen
NCT05174169
SWOGGI008

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.