Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Total Body Irradiation and Hypofractionated Radiation Therapy with Atezolizumab and Chemotherapy for the Treatment of Extensive-Stage Small Cell Lung Cancer, TESSERACT Trial

Multiple Cancer Types

This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation [TBI]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy [H-RT]) combined with atezolizumab and chemotherapy (carboplatin & etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung, Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206

Gabapentin plus Ketamine for the Prevention of Acute and Chronic Pain in Patients with Locally Advanced Head and Neck Cancer Undergoing Chemoradiation

Multiple Cancer Types

This phase I/II trial studies the side effects and best dose of a combination of gabapentin and ketamine and to see how well it works to prevent acute and chronic pain in patients receiving chemotherapy and radiation therapy (chemoradiation) for head and neck cancer that has spread to nearby tissue or lymph nodes (locally advanced). Gabapentin is a medication that is commonly used to treat nerve related pain. Specifically, it has been used to treat pain involving the mouth, throat and nasal passages in head and neck cancer patients treated with radiation. Ketamine is a type of general anesthetic that blocks pathways to the brain involved with sensing pain. This trial may help doctors determine how patients tolerate the combination of gabapentin and ketamine and to find the correct dosing for ketamine in those taking gabapentin. This will be the basis for a future, larger study to look at how effective this combination is at reducing and/or preventing pain in head and neck cancer patients.
Head/Neck, Phase I
I/II
Lockney, Natalie
NCT05156060
VICCHNP2173

Active Myeloid Target Compound Decitabine and Cedazuridine in Combination with Itacitinib for the Treatment of Myelodysplastic/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes, ABNL-MARRO Study

Multiple Cancer Types

This phase I/II trial tests the safety, side effects, and best dose of decitabine and cedazuridine (ASTX727) in combination with itacitinib and how well they work in treating patients with myelodysplastic/ myeloproliferative neoplasm. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Itacitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving decitabine and cedazuridine in combination with itacitinib may work better in treating patients with myelodysplastic/myeloproliferative neoplasm.
Hematologic, Myelodysplastic Syndrome
I/II
Savona, Michael
NCT04061421
VICCHEMP1977

Study of KITE-197 in Participants With Relapsed or Refractory Large B-cell Lymphoma

Lymphoma

This study will have two Phases: Phase 1a and Phase 1b. The goal of Phase 1a of this clinical
study is to learn more about the safety, tolerability and dosing of study drug KITE-197, in
participants with relapsed or refractory large B-cell lymphoma (r/rLBCL). The goal of Phase
1b of this clinical study is learn about the effectiveness of the recommended dose of
KITE-197 in participants with r/r LBCL.

The primary objectives of this study are:

Phase 1a: To evaluate the safety of KITE-197 in participants with r/r LBCL and determine the
target dose level for Phase 1b.

Phase 1b: To evaluate the efficacy of KITE-197 in participants with r/r LBCL as measured by
the complete remission (CR) rate.
Lymphoma
I
Jallouk, Andrew
NCT06079164
VICC-DTCTT23136P

Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Patients with Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors

Multiple Cancer Types

This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs.
Colon, Esophageal, Gastric/Gastroesophageal, Gastrointestinal, Liver, Pancreatic, Rectal
IV
Idrees, Kamran
NCT06016855
VICCGI2283

Pembrolizumab after Radiation Therapy and Chemotherapy in Treating Patients with Limited Stage Small Cell Lung Cancer

Lung

This phase II trial studies how well pembrolizumab after standard treatment with radiation plus the following chemotherapy drugs: cisplatin or carboplatin, plus etoposide works in treating patients with limited stage small cell lung cancer (LS-SCLC). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab after standard treatment with radiation plus chemotherapy may increase the ability of the immune system to fight LS-SCLC.
Lung
II
Iams, Wade
NCT06140407
VICCTHO22114

Biomarker-Driven Radiation Therapy Dose Reduction after Transoral Robotic Surgery for the Treatment of HPV-Positive Oropharyngeal Cancer

Head/Neck

This phase II trial tests whether reduced dose radiation therapy after transoral robotic surgery works in treating patients with human papillomavirus (HPV)-positive oropharyngeal cancer. HPV positive oropharyngeal cancer has a better prognosis than oropharyngeal cancer not caused by HPV. A standard of care treatment for HPV positive oropharyngeal cancer is transoral robotic surgery followed by radiation therapy. However, this treatment is associated with many long-term side effects including difficulty swallowing. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Giving reduced dose radiation therapy after transoral robotic surgery may improve swallowing outcomes and quality of life compared to standard of care dose radiation therapy after transoral robotic surgery.
Head/Neck
II
Topf, Michael
NCT05387915
VICC-ITHAN23125

Tovorafenib (DAY101) Monotherapy or in Combination With Other Therapies for Patients With Melanoma and Other Solid Tumors

Multiple Cancer Types

This is a Phase 1b/2, multi-center, open label umbrella study of patients 12 years of age
with recurrent, progressive, or refractory melanoma or other solid tumors with alterations in
the key proteins of the RAS/RAF/MEK/ERK pathway, referred to as the MAPK pathway.
Miscellaneous, Phase I
I/II
Berlin, Jordan
NCT04985604
VICCMD2142

A Study of Immune Checkpoint Inhibitor Combinations With Axitinib in Participants With Untreated Locally Advanced Unresectable or Metastatic Renal Cell Carcinoma

Kidney (Renal Cell)

This study will evaluate the efficacy, safety, and pharmacokinetics of tobemstomig (also
known as RO7247669) in combination with axitinib alone or with tiragolumab (anti-TIGIT) and
axitinib, as compared to pembrolizumab and axitinib in participants with previously
untreated, unresectable locally advanced or metastatic clear-cell renal cell carcinoma
(ccRCC).
Kidney (Renal Cell)
II
Rini, Brian
NCT05805501
VICCURO22113

A First-in-human Study of PRTH-101 Monotherapy +/- Pembrolizumab in Subjects With Advanced Malignancies

The goal of this Open-Label Study is to evaluate the safety and tolerability of PRTH-101
alone or in combination with pembrolizumab in adults with advance or metastatic solid tumors.
Not Available
I
Berlin, Jordan
NCT05753722
VICC-DTPHI23182

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.