Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Testing the Addition of an Anti-Cancer Drug, Irinotecan, to the Standard Chemotherapy Treatment (FOLFOX) after Long-Course Radiation Therapy for Advanced-Stage Rectal Cancers to Improve the Rate of Complete Response and Long-Term Rates of Organ Preservation

Rectal

This phase II trial compares the effect of usual treatment approach alone (FOLFOX or CAPOX after chemoradiation) with using FOLFIRINOX after chemoradiation in patients with stage II-III rectal cancer. Combination chemotherapy regiments, such as FOLFIRINOX [folinic acid (leucovorin), fluorouracil, irinotecan, and oxaliplatin], FOLFOX (leucovorin, fluorouracil, and oxaliplatin), or CAPOX (capecitabin and oxaliplatin) use more than one anticancer drug that work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. FOLFOX or CAPOX are used after chemoradiation as usual treatment for rectal cancer. Giving FOLFIRINOX after chemoradiation may increase the response rate for the primary rectal tumor and lead to higher rates of clinical complete response (and thus a chance to avoid surgery) compared to FOLFOX or CAPOX after chemoradiation in patients with locally advanced rectal cancer.
Rectal
II
Ciombor, Kristen
NCT05610163
SWOGGIA022104

Testing the Use of Combination Therapy in Adult Patients with Newly Diagnosed Multiple Myeloma, the EQUATE Trial

Multiple Myeloma

This phase III trial compares the combination of four drugs (daratumumab-hyaluronidase, bortezomib, lenalidomide and dexamethasone) to the use of a three-drug combination (daratumumab-hyaluronidase, lenalidomide and dexamethasone) in patients with newly diagnosed multiple myeloma. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Daratumumab-hyaluronidase is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Anti-inflammatory drugs, such as dexamethasone lower the bodys immune response and are used with other drugs in the treatment of some types of cancer. Adding bortezomib to daratumumab-hyaluronidase, lenalidomide, and dexamethasone may be more effective in shrinking the cancer or preventing it from returning, compared to continuing on a combination of daratumumab-hyaluronidase, lenalidomide, and dexamethasone in patients with newly diagnosed multiple myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT04566328
ECOGPCLEAA181

Lower-Dose Chemoradiation in Treating Patients with Early-Stage Anal Cancer, the DECREASE Study

Rectal

This phase II trial studies how well lower-dose chemotherapy plus radiation (chemoradiation) therapy works in comparison to standard-dose chemoradiation in treating patients with early-stage anal cancer. Drugs used in chemotherapy, such as mitomycin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. This study may help doctors find out if lower-dose chemoradiation is as effective and has fewer side effects than standard-dose chemoradiation, which is the usual approach for treatment of this cancer type.
Rectal
II
Eng, Cathy
NCT04166318
ECOGGIEA2182

Testing the use of Ado-Trastuzumab Emtansine Compared to the Usual Treatment (Chemotherapy with Docetaxel plus Trastuzumab) for Recurrent, Metastatic, or Unresectable HER2-Positive Salivary Gland Cancer

Head/Neck

This phase II trial compares the effect of usual treatment of docetaxel chemotherapy plus trastuzumab, to ado-emtansine (T-DM1) in patients with HER2-positive salivary gland cancer that has come back (recurrent), that has spread from where it first started (primary site) to other places in the body, or cannot be removed by surgery (unresectable). Trastuzumab is a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by body's immune system. Trastuzumab emtansine contains trastuzumab, linked to a chemotherapy drug called emtansine. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers emtansine to kill them. Docetaxel is in a class of medications called taxanes. It stops cancer cells from growing and dividing and may kill them. Trastuzumab emtansine may work better compared to usual treatment of chemotherapy with docetaxel and trastuzumab in treating patients with recurrent, metastatic or unresectable salivary gland cancer.
Head/Neck
II
Choe, Jennifer
NCT05408845
NRGHN010

Testing the Use of Steroids and Tyrosine Kinase Inhibitors with Blinatumomab or Chemotherapy for Newly Diagnosed BCR-ABL-Positive Acute Lymphoblastic Leukemia in Adults

Leukemia

This phase III trial compares the effect of usual treatment of chemotherapy and steroids and a tyrosine kinase inhibitor (TKI) to the same treatment plus blinatumomab. Blinatumomab is a Bi-specific T-Cell Engager (BiTE) that may interfere with the ability of cancer cells to grow and spread. The information gained from this study may help researchers determine if combination therapy with steroids, TKIs, and blinatumomab work better than the standard of care.
Leukemia
III
Mohan, Sanjay
NCT04530565
ECOGHEMEA9181

Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy with Radiation after Surgery for Recurrent Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy [cisplatin and carboplatin] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191

Testing the Use of Investigational Drugs Atezolizumab and/or Bevacizumab with or without Standard Chemotherapy in the Second-Line Treatment of Advanced-Stage Head and Neck Cancers

This phase II/III compares the standard therapy (chemotherapy plus cetuximab) versus adding bevacizumab to standard chemotherapy, versus combination of just bevacizumab and atezolizumab in treating patients with head and neck cancer that has spread to other places in the body (metastatic or advanced stage) or has come back after prior treatment (recurrent). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Cisplatin and carboplatin are in a class of chemotherapy medications known as platinum-containing compounds. They work by killing, stopping, or slowing the growth of cancer cells. Docetaxel is in a class of chemotherapy medications called taxanes. It stops cancer cells from growing and dividing and may kill them. The addition of bevacizumab to standard chemotherapy or combination therapy with bevacizumab and atezolizumab may be better than standard chemotherapy plus cetuximab in treating patients with recurrent/metastatic head and neck cancers.
Not Available
II/III
Choe, Jennifer
NCT05063552
ECOGHNEA3202

Ipilimumab, Nivolumab, and Ciforadenant as First-Line Therapy for Stage IV Renal Cell Carcinoma

Multiple Cancer Types

This phase 1b/2 trial tests the safety, side effects, and best dose of ciforadenant in combination with ipilimumab and nivolumab as initial (first-line) therapy for patients with stage IV renal cell carcinoma. Ciforadenant may stimulate the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ciforadenant in combination with ipilimumab and nivolumab may help control the disease.
Kidney (Renal Cell), Phase I
I/II
Beckermann, Kathryn
NCT05501054
VICCUROP22122

Evexomostat Plus Alpelisib and Fulvestrant in Women With the PIK3CA Mutation With HR+/Her2- Breast Cancer

The PIK3CA gene is frequently mutated in breast cancer, leading to disease aggressiveness and
patient mortality. Alpelisib, a small molecule that inhibits the activity of the PIK3CA gene
product PI3K, has demonstrated clinical benefit in cancer patients with this gene mutation.
However, hyperglycemia, an on-target toxicity associated with alpelisib that leads to
hyperinsulinemia, limits the drug's clinical efficacy and induces high grade hyperglycemia in
patients with baseline metabolic dysfunction, insulin resistance and/or elevated HbA1c.
Restoring insulin sensitivity and reduction in circulating concentrations of insulin have
been reported to improve the activity of alpelisib.

Evexomostat (SDX-7320) is a polymer-conjugate of a novel small molecule methionine
aminopeptidase 2 (MetAP2) inhibitor that has demonstrated the ability to reduce
alpelisib-induced hyperglycemia in multiple animal experiments and has demonstrated
synergistic anti-tumor activity independent of changes in glucose or insulin. Evexomostat was
well tolerated in a Phase 1 safety study in late-stage cancer patients and showed
improvements in insulin resistance for patients that presented with baseline elevated
insulin. Overall, the most common treatment-emergent adverse events with evexomostat (TEAEs)
were fatigue (44%), decreased appetite (38%), constipation and nausea (each 28%), and
diarrhea (22%). All other TEAEs occurred at an incidence <20%.

The purpose of this study is to characterize the safety of the triplet drug combination
(alpelisib, fulvestrant plus evexomostat), to test whether evexomostat, when given in
combination with alpelisib and fulvestrant will reduce the number and severity of
hyperglycemic events and/or reduce the number of anti-diabetic medications needed to control
the hyperglycemia for patients deemed at risk for alpelisib-induced hyperglycemia (baseline
elevated HbA1c or well-controlled type 2 diabetes), and to assess preliminary anti-tumor
efficacy and changes in key biomarkers and quality of life in this patient population.
Not Available
I/II
Rexer, Brent
NCT05455619
VICCBREP2271

Itacitinib for the Treatment Steroid Refractory Immune Related Adverse Events Arising from Immune Checkpoint Inhibitors

Miscellaneous

This phase II trial tests how well itacitinib works in in patients with immune related adverse events (irAEs) arising from immune checkpoint inhibitors (ICI) that do not respond to steroids (steroid refractory). Steroids are the usual treatment for these side effects. However, sometimes steroids do not improve or fix the side effects. Giving itacitinib may be effective in treating patients with known or suspected problems coming from ICIs, that do not resolve or improve with steroids, by reducing the patient's immune system response that can cause the irAEs.
Miscellaneous
II
Johnson, Douglas
NCT05660421
VICCCTT2193

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.