Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Aveir DR i2i Study - Aveir Dual-Chamber Leadless i2i IDE Study

Not Available
II
Richardson, Travis
CRE-ARR0013

CONFORM Pivotal - An Evaluation of the Safety and Effectiveness of the Conformal CLAAS System for Left Atrial Appendage Occlusion

Not Available
II
Ellis, Christopher
CRE-ARR0011

Sphere- Treatment of Persistent Atrial Fibrillation with the Sphere -9- mapping and ablation cathether and the AFFERA Mapping and Ablation system

Not Available
II
Richardson, Travis
CRE-ARR0015

LESS VT- Flexibility Sensor Enabled Substrate Targeted Ablation for teh Reduction of VT (LESS VT) Study

Not Available
II
Tandri, Harikrishna
CRE-ARR0016

REDUCE LAP II- A study to evaluate the Corvia Medical Inc IASD system II REDUCE Elevated Left Atrial Pressure in Patients with Hear Failure

Not Available
II
Gupta, Deepak
CRE-CHF0002

An Imaging Agent (Panitumumab-IRDye800) for the Detection of Head and Neck Cancer During Surgery

Head/Neck

This phase II trial studies the effect of panitumumab-IRDye800 in detecting head and neck cancer during surgery in patients head and neck cancer. Doctors who perform surgery for head and neck cancer are well-trained in removing all of the cancer that can be seen during the operation; however, there are times when there is cancer that is so small that it cannot be seen by the surgeon. Panitumumab-IRDye800 is a combination of panitumumab and IRDye800CW. Panitumumab works by attaching to the cancer cell in a unique way that allows the drug to get into the cancer tissue. IRDye800CW is an investigational dye that, when tested in the laboratory, helps various characteristics of human tissue show up better when using a special camera. Panitumumab-IRDye800 is a combination of the drug and the dye that attaches to cancer cells and appears to make them visible to the doctor when he or she uses the special camera during the surgery. Giving panitumumab-IRDye800 may help doctors better identify cancer in the operating room.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109

Treatment Response and Biomarker-Guided Steroid Taper for Children with GVHD

Multiple Cancer Types

This phase II trial studies the treatment response for patients with acute graft-versus-host disease (GVHD). GVHD occurs when donor immune cells attack the healthy tissue of a bone marrow or stem cell transplant patient. The standard treatment for GVHD is to lower the activity of the donor cells by using steroid medications such as prednisone. But steroid treatment may cause many complications and the risk of these complications increases with higher doses of steroids and longer treatment. It is important to find ways to decrease the steroid treatment in patients who do not need long courses. Researchers are doing this study to find out how many subjects respond well to lower steroid dosing based on a blood test (GVHD biomarker) and if they develop fewer complications.
Miscellaneous, Pediatrics
II
Kitko, Carrie
NCT05090384
VICCPED2213

Testing the Addition of Pembrolizumab, an Immunotherapy Cancer Drug to Olaparib Alone as Therapy for Patients with Pancreatic Cancer That Has Spread with Inherited BRCA Mutations

Pancreatic

This phase II trial studies whether adding pembrolizumab to olaparib (standard of care) works better than olaparib alone in treating patients with pancreatic cancer with germline BRCA1 or BRCA2 mutations that has spread to other places in the body (metastatic). BRCA1 and BRCA2 are human genes that produce tumor suppressor proteins. These proteins help repair damaged deoxyribonucleic acid (DNA) and, therefore, play a role in ensuring the stability of each cells genetic material. When either of these genes is mutated, or altered, such that its protein product is not made or does not function correctly, DNA damage may not be repaired properly. As a result, cells are more likely to develop additional genetic alterations that can lead to some types of cancer, including pancreatic cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Olaparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. The addition of pembrolizumab to the usual treatment of olaparib may help to shrink tumors in patients with metastatic pancreatic cancer with BRCA1 or BRCA2 mutations.
Pancreatic
II
Cardin, Dana
NCT04548752
SWOGGIS2001

Testing the Addition of Nivolumab to Standard Treatment for Patients with Metastatic or Unresectable Colorectal Cancer that have a BRAF Mutation

Multiple Cancer Types

This phase II trial tests whether adding nivolumab to the usual treatment (encorafenib and cetuximab) works better than the usual treatment alone to shrink tumors in patients with colorectal cancer that has spread to other places in the body (metastatic) or that cannot be removed by surgery (unresectable) and whose tumor has a mutation in a gene called BRAF. Encorafenib is in a class of medications called kinase inhibitors. It is used in patients whose cancer has a certain mutation (change) in the BRAF gene. It works by blocking the action of mutated BRAF that signals cancer cells to multiply. This helps to stop or slow the spread of cancer cells. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab in combination with encorafenib and cetuximab may be more effective than encorafenib and cetuximab alone at stopping tumor growth and spreading in patients with metastatic or unresectable BRAF-mutant colorectal cancer.
Colon, Rectal
II
Eng, Cathy
NCT05308446
SWOGGIS2107

Ensartinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213652
COGAPEC1621F

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.