Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Blood-based, Point-of-need Assessment of CAR-T Vector Load in DLBCL Patients Undergoing Axicabtagene Ciloleucel (axi-cel) Therapy: A Multi-Site Study

Lymphoma

Lymphoma
N/A
Oluwole, Olalekan
VICC-IDCTT23426

Open-Label, Long-Term Safety and Efficacy Study of Mim8 in Participants with Haemophilia A with or without Inhibitors

Not Available
III
Wheeler, Allison
NCT05685238
NCBH2401-FRONTIER4

Biomarker Verification in Pediatric Chronic GvHD: ABLE 2.0 / PTCTC GVH 1901 Study

This study will validate a previously developed pediatric prognostic biomarker algorithm
aimed at improving prediction of risk for the later development of chronic graft-versus-host
disease (cGvHD) in children and young adults undergoing allogeneic hematopoietic stem cell
transplant.

By developing an early risk stratification of patients into low-, intermediate-, and
high-risk for future cGvHD development (based upon their biomarker profile, before the onset
of cGvHD), pre-emptive therapies aimed at preventing the onset of cGvHD can be developed
based upon an individual's biological risk profile.

This study will also continue research into diagnostic biomarkers of cGvHD, and begin work
into biomarker models that predict clinical response to cGvHD therapies.
Not Available
N/A
Kitko, Carrie
NCT04372524
VICCPED2183

Study to Learn More About the Safety and Effectiveness of the Drug VITRAKVI During Routine Use in Patients With TRK Fusion Cancer Which is Locally Advanced or Spread From the Place Where it Started to Other Places in the Body

Multiple Cancer Types

In this observational study researcher want to learn more about the effectiveness of drug
VITRAKVI (generic name: larotrectinib) and how well the drug is tolerated during routine use
in patients with TRK fusion cancer which is locally advanced or spread from the place where
it started to other places in the body. TRK fusion cancer is a term used to describe a
variety of common and rare cancers that are caused by a change to the NTRK (Neurotrophic
Tyrosine Kinase) gene called a fusion. During this fusion, an NTRK gene joins together, or
fuses, with a different gene. This joining results in the activation of certain proteins (TRK
fusion proteins), which can cause cancer cells to multiply and form a tumor. VITRAKVI is an
approved drug that blocks the action of the NTRK gene fusion. This study will enroll adult
and paediatric patients suffering from a solid tumor with NTRK gene fusion for whom the
decision to treat their disease with VITRAKVI has been made by their treating physicians.
During the study, patients' medical information such as treatment information with VITRAKVI,
other medication or treatments, changes in disease status and other health signs and symptoms
will be collected within the normal medical care by the treating doctor. Participants will be
observed over a period from 24 to 60 months.
Pediatric Solid Tumors, Pediatrics
N/A
Borinstein, Scott
NCT04142437
VICCPED2071

Studying the Effect of Levocarnitine in Protecting the Liver from Chemotherapy for Leukemia or Lymphoma

Multiple Cancer Types

This phase III trial compares the effect of adding levocarnitine to standard chemotherapy vs. standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
Leukemia, Pediatric Leukemia
III
Borinstein, Scott
NCT05602194
VICC-NTPED23475

Treatment Response and Biomarker-Guided Steroid Taper for Children with GVHD

Multiple Cancer Types

This phase II trial studies the treatment response for patients with acute graft-versus-host disease (GVHD). GVHD occurs when donor immune cells attack the healthy tissue of a bone marrow or stem cell transplant patient. The standard treatment for GVHD is to lower the activity of the donor cells by using steroid medications such as prednisone. But steroid treatment may cause many complications and the risk of these complications increases with higher doses of steroids and longer treatment. It is important to find ways to decrease the steroid treatment in patients who do not need long courses. Researchers are doing this study to find out how many subjects respond well to lower steroid dosing based on a blood test (GVHD biomarker) and if they develop fewer complications.
Miscellaneous, Pediatrics
II
Kitko, Carrie
NCT05090384
VICCPED2213

Long-term Follow-up Study for Participants of Kite-Sponsored Interventional Studies Treated With Gene-Modified Cells

Multiple Cancer Types

The goal of this clinical study is to learn more about the long-term safety, effectiveness
and prolonged action of Kite study drugs, axicabtagene ciloleucel, brexucabtagene autoleucel,
KITE-222, KITE-363, KITE-439, KITE-585, and KITE-718, in participants of Kite-sponsored
interventional studies.
Hematologic, Leukemia, Lymphoma, Pediatric Leukemia, Pediatric Lymphoma
N/A
Kassim, Adetola
NCT05041309
VICCCTT2170

Evaluation of Immunologic Response following COVID-19 Vaccination in Children, Adolescents, and Young Adults with Cancer

Pediatrics

This study evaluates immunologic response following COVID-19 vaccination in children, adolescents, and young adults with cancer. Vaccines work by stimulating the bodys immune cells to respond against a specific disease. The immune response produces protection from that disease. Effects from cancer and from treatments for cancer can reduce the bodys natural disease fighting ability (called immunity). Factors such as vaccine type, timing of vaccine dosing related to treatment for cancer and number of vaccine doses or boosts (extra vaccine shots) may strengthen or diminish the bodys protective immune response. This study may help researchers learn more about how the bodys immune system responds to the COVID-19 vaccine when the vaccination is given during or after cancer treatment.
Pediatrics
N/A
Esbenshade, Adam
NCT05228275
COGACCL21C2

A Study of the Drugs Selumetinib versus Carboplatin/Vincristine in Patients with Neurofibromatosis and Low-Grade Glioma

Multiple Cancer Types

This phase III trial studies if selumetinib works just as well as the standard treatment with carboplatin/vincristine (CV) for subjects with NF1-associated low grade glioma (LGG), and to see if selumetinib is better than CV in improving vision in subjects with LGG of the optic pathway (vision nerves). Selumetinib is a drug that works by blocking some enzymes that low-grade glioma tumor cells need for their growth. This results in killing tumor cells. Drugs used as chemotherapy, such as carboplatin and vincristine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether selumetinib works better in treating patients with NF1-associated low-grade glioma compared to standard therapy with carboplatin and vincristine.
Neuro-Oncology, Pediatrics
III
Pastakia, Devang
NCT03871257
COGACNS1831

A Study of the Drugs Selumetinib vs. Carboplatin and Vincristine in Patients with Low-Grade Glioma

Multiple Cancer Types

This phase III trial compares the effect of selumetinib versus the standard of care treatment with carboplatin and vincristine (CV) in treating patients with newly diagnosed or previously untreated low-grade glioma (LGG) that does not have a genetic abnormality called BRAFV600E mutation and is not associated with systemic neurofibromatosis type 1. Selumetinib works by blocking some of the enzymes needed for cell growth and may kill tumor cells. Carboplatin and vincristine are chemotherapy drugs that work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. The overall goal of this study is to see if selumetinib works just as well as the standard treatment of CV for patients with LGG. Another goal of this study is to compare the effects of selumetinib versus CV in subjects with LGG to find out which is better. Additionally, this trial will also examine if treatment with selumetinib improves the quality of life for subjects who take it.
Neuro-Oncology, Pediatrics
III
Pastakia, Devang
NCT04166409
COGACNS1833

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.