Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A Study to Compare Standard Therapy to Treat Hodgkin Lymphoma to the Use of Two Drugs, Brentuximab Vedotin and Nivolumab

Multiple Cancer Types

This phase III trial compares the effect of adding immunotherapy (brentuximab vedotin and nivolumab) to standard treatment (chemotherapy with or without radiation) to the standard treatment alone in improving survival in patients with stage I and II classical Hodgkin lymphoma. Brentuximab vedotin is in a class of medications called antibody-drug conjugates. It is made of a monoclonal antibody called brentuximab that is linked to a cytotoxic agent called vedotin. Brentuximab attaches to CD30 positive lymphoma cells in a targeted way and delivers vedotin to kill them. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs such as doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, dacarbazine, and procarbazine hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cells deoxyribonucleic acid (DNA) and may kill cancer cells. It may also lower the bodys immune response. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Vincristine is in a class of medications called vinca alkaloids. It works by stopping cancer cells from growing and dividing and may kill them. Prednisone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Adding immunotherapy to the standard treatment of chemotherapy with or without radiation may increase survival and/or fewer short-term or long-term side effects in patients with classical Hodgkin lymphoma compared to the standard treatment alone.
Pediatric Lymphoma, Pediatrics
III
Smith, Christine
NCT05675410
VICC-NTPED23306

Accelerated or Standard BEP Chemotherapy in Treating Patients with Intermediate or Poor-Risk Metastatic Germ Cell Tumors

Germ Cell (Pediatrics)

This phase III trial compares the effect of an accelerated schedule of bleomycin sulfate, etoposide phosphate, and cisplatin (BEP) chemotherapy to the standard schedule of BEP chemotherapy for the treatment of patients with intermediate or poor-risk germ cell tumors that have spread to other places in the body (metastatic). Drugs used in chemotherapy, such as bleomycin sulfate, etoposide phosphate, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BEP chemotherapy on a faster, or accelerated schedule may work better with fewer side effects in treating patients with intermediate or poor-risk metastatic germ cell tumors compared to the standard schedule.
Germ Cell (Pediatrics)
III
Borinstein, Scott
NCT02582697
COGAGCT1532

Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung

Neuroendocrine

This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
Neuroendocrine
II/III
Ramirez, Robert
NCT05058651
SWOGGIS2012

Study of INBRX-109 in Conventional Chondrosarcoma

Sarcoma

Randomized, blinded, placebo-controlled, Phase 2 study of INBRX-109 in unresectable or
metastatic conventional chondrosarcoma patients.
Sarcoma
II
Davis, Elizabeth
NCT04950075
VICCSAR2165

First in Human Study of Ziftomenib in Relapsed or Refractory Acute Myeloid Leukemia

Multiple Cancer Types

This first-in-human (FIH) dose-escalation and dose-validation/expansion study will assess
ziftomenib, a menin-MLL(KMT2A) inhibitor, in patients with relapsed or refractory acute
myeloid leukemia (AML) as part of Phase 1. In Phase 2, assessment of ziftomenib will continue
in patients with NPM1-m AML.
Leukemia, Phase I
I/II
Savona, Michael
NCT04067336
VICCHEMP20122

Study of DF1001 in Patients With Advanced Solid Tumors

Multiple Cancer Types

DF1001-001 is a study of a new molecule that targets natural killer (NK) cells and T-cell
activation signals to specific receptors on cancer cells. The study will occur in two phases.
The first phase will be a dose escalation phase, enrolling patients with various types of
solid tumors that express human epidermal growth factor receptor 2 (HER2). The second phase
will include a dose expansion using the best dose selected from the first phase of the study.
Multiple cohorts will be opened with eligible patients having either HER2 activated non-small
cell lung cancer, hormone receptor (HR) positive HER2 negative metastatic breast cancer, or
HER2 positive metastatic breast cancer. DF1001-001 will be administered as monotherapy or in
combination; combinations are DF1001 + nivolumab, DF1001 + Nab paclitaxel, and DF1001 +
sacituzumab govitecan-hziy.
Miscellaneous, Phase I
I/II
Berlin, Jordan
NCT04143711
VICCPHI2064

Testing Atezolizumab Alone or Atezolizumab Plus Bevacizumab in People with Advanced Alveolar Soft Part Sarcoma

Sarcoma

This phase II trial studies how well atezolizumab or atezolizumab plus bevacizumab works in treating patients with alveolar soft part sarcoma that has not been treated, has spread from where it started to other places in the body (advanced) and cannot be removed by surgery (unresectable). Atezolizumab works by unblocking the immune system, allowing the immune system cells to recognize and then attack tumor cells. Bevacizumab works by controlling the growth of new blood vessels. Giving atezolizumab alone or atezolizumab with bevacizumab may shrink the cancer.
Sarcoma
II
Davis, Elizabeth
NCT03141684
VICCSAR16155ET-CT

INCB000928 Administered as a Monotherapy or in Combination With Ruxolitinib in Participants With Anemia Due to Myeloproliferative Disorders

Miscellaneous

This Phase 1/2, open-label, dose-finding study is intended to evaluate the safety and
tolerability, PK, PD, and efficacy of INCB000928 administered as monotherapy or in
combination with ruxolitinib in participants with MF who are transfusion-dependent or
presenting with symptomatic anemia. This study will consist of 2 parts: dose escalation and
expansion.
Miscellaneous
I/II
Mohan, Sanjay
NCT04455841
VICCHEMP2051

A Study of Adjuvant Pembrolizumab/Vibostolimab (MK-7684A) Versus Pembrolizumab for Resected High-Risk Melanoma in Participants With High-Risk Stage II-IV Melanoma (MK-7684A-010/KEYVIBE-010)

Melanoma

The primary purpose of this study is to compare pembrolizumab/vibostolimab to pembrolizumab
with respect to recurrence-free survival (RFS). The primary hypothesis is that
pembrolizumab/vibostolimab is superior to pembrolizumab with respect to RFS as assessed by
the investigator in participants with high-risk resected Stage IIB, IIC, III and IV melanoma.
Melanoma
III
Johnson, Douglas
NCT05665595
VICC-DTMEL23033

A Study to Evaluate the Safety and Tolerability of TOS-358 in Adults With Select Solid Tumors

Multiple Cancer Types

The goal of this clinical trial is to evaluate the safety of TOS-358 in adults with select
solid tumors who meet study enrollment criteria. The main questions it aims to answer are:

1. what is the maximum tolerated dose and recommended dose for phase 2?

2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or
twice per day?
Breast, Cervical, Gastrointestinal, Gynecologic, Head/Neck, Lung, Phase I, Urologic
I
Berlin, Jordan
NCT05683418
VICC-DTPHI23103

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.