Physician Search
![]() |
![]() |
Consuelo Wilkins, MD, MSCI, Senior Vice President for Health Equity and Inclusive Excellence for Vanderbilt University Medical Center (VUMC) and Senior Associate Dean for Health Equity and Inclusive Excellence for Vanderbilt University School of Medicine, always knew she wanted to be a physician. "Health equity was built into everything I did, even if I didn’t know it or recognize it at the time," Wilkins said. "I have always learned and believed that people are the same — everyone deserves to be healthy, and everyone should have the best opportunities to take care of themselves and their families." Click below to learn more about health equity initiatives. https://momentum.vicc.org/2021/09/everyone-deserves-to-be-healthy/ |
Vanderbilt was the lead site for an NIH-funded, phase 2, multicenter influenza vaccine study in pediatric allogeneic hematopoietic stem cell transplant (HCT) recipients that may lead to a change in the current flu vaccine recommendations in this vulnerable population. Natasha Halasa, MD, MPH and colleagues recently published in the New England Journal of Medicine, that two doses of high-dose trivalent flu vaccine resulted in higher amounts of influenza-specific antibodies than two doses of standard dose quadrivalent vaccine. https://news.vumc.org/2023/03/02/high-dose-flu-vaccine-beneficial-for-pediatric-stem-cell-transplant-patients/ |
Nivolumab in Combination with Chemo-Immunotherapy for the Treatment of Newly Diagnosed Primary Mediastinal B-Cell Lymphoma
Multiple Cancer Types
This phase III trial compares the effects of nivolumab with chemo-immunotherapy versus chemo-immunotherapy alone in treating patients with newly diagnosed primary mediastinal B-cell lymphoma (PMBCL). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Treatment for PMBCL involves chemotherapy combined with an immunotherapy called rituximab. Chemotherapy drugs work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving nivolumab with chemo-immunotherapy may help treat patients with PMBCL.
Lymphoma,
Pediatric Lymphoma,
Pediatrics
III
Smith, Christine
NCT04759586
COGANHL1931
Using Cancer Cells in the Blood (ctDNA) to Determine the Type of Chemotherapy that will Benefit Patients who Have Had Surgery for Colon Cancer, (CIRCULATE-US)
Multiple Cancer Types
This phase II/III trial aims to determine the type of chemotherapy that will benefit patients who have had surgery for their stage II or III colon cancer based on presence or absence of circulating tumor deoxyribonucleic acid (ctDNA). In ctDNA positive patients, this trial compares the effect of usual chemotherapy versus mFOLFIRINOX. In ctDNA negative patients, this trial compares the effect of usual chemotherapy versus ctDNA testing every 3 months to determine which approach might be better to prevent colon cancer from returning. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It works by damaging cells DNA and may kill cancer cells. Leucovorin is in a class of medications called folic acid analogs. It works by protecting healthy cells from the effects of chemotherapy medications while allowing chemotherapy agent to enter and kill cancer cells. Fluorouracil is in a class of medications called antimetabolites. It stops cells from making DNA and may slow or stop the growth of cancer cells. Capecitabine is in a class of medications called antimetabolites. It Is taken up by cancer cells and breaks down to a substance that kills cancer cells. Irinotecan is in a class of antineoplastic medications called topoisomerase I inhibitors. It works by stopping the growth of cancer cells. This trial may help doctors determine what kind of chemotherapy to recommend to colon cancer patients based on the presence or absence of ctDNA after surgery for colon cancer.
Colon,
Rectal
II/III
Ciombor, Kristen
NCT05174169
SWOGGI008
Testing the Usual Treatment of Radiation Therapy and Hormonal Therapy to Hormonal Therapy alone for Low-Risk, Early Stage Breast Cancer, the DEBRA Trial
Breast
Breast
This phase III trial compares the effect of radiation therapy combined with hormonal therapy versus hormonal therapy alone in treating patients with low risk, early stage breast cancer with Oncotype Dx Recurrence =< 18. Oncotype DX is a laboratory test which results in a score that is used to help predict whether breast cancer will spread to other parts of the body or come back. Radiation therapy uses high doses of radiation to kill cancer cells and shrink tumors but may result in some side effects. Hormones called estrogen and progesterone may contribute to the growth of breast tumor cells. Hormone therapy, also called endocrine therapy, may stop the growth of tumor cells by blocking or removing these hormones. This clinical trial may help researchers understand if patients with low-risk, early stage breast cancer who have Oncotype recurrence score of =< 18 can safely omit radiation therapy and only be treated with hormonal therapy without losing any radiation treatment benefit.
Breast
III
Chak, Bapsi
NCT04852887
NRGBREBR007
Testing the Use of Combination Therapy in Adult Patients with Newly Diagnosed Multiple Myeloma, the EQUATE Trial
Multiple Myeloma
Multiple Myeloma
This phase III trial compares the combination of four drugs (daratumumab-hyaluronidase, bortezomib, lenalidomide and dexamethasone) to the use of a three-drug combination (daratumumab-hyaluronidase, lenalidomide and dexamethasone) in patients with newly diagnosed multiple myeloma. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Daratumumab-hyaluronidase is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Anti-inflammatory drugs, such as dexamethasone lower the bodys immune response and are used with other drugs in the treatment of some types of cancer. Adding bortezomib to daratumumab-hyaluronidase, lenalidomide, and dexamethasone may be more effective in shrinking the cancer or preventing it from returning, compared to continuing on a combination of daratumumab-hyaluronidase, lenalidomide, and dexamethasone in patients with newly diagnosed multiple myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT04566328
ECOGPCLEAA181
A Study of Combination Chemotherapy for Patients with Newly Diagnosed DAWT and Relapsed FHWT
Multiple Cancer Types
This phase II trial studies how well combination chemotherapy works in treating patients with newly diagnosed stage II-IV diffuse anaplastic Wilms tumors (DAWT) or favorable histology Wilms tumors (FHWT) that have come back (relapsed). Drugs used in chemotherapy regimens such as UH-3 (vincristine, doxorubicin, cyclophosphamide, carboplatin, etoposide, and irinotecan) and ICE/Cyclo/Topo (ifosfamide, carboplatin, etoposide, cyclophosphamide, and topotecan) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help doctors find out what effects, good and/or bad, regimen UH-3 has on patients with newly diagnosed DAWT and standard risk relapsed FHWT (those treated with only 2 drugs for the initial WT) and regimen ICE/Cyclo/Topo has on patients with high and very high risk relapsed FHWT (those treated with 3 or more drugs for the initial WT).
Pediatrics,
Wilms / Other Kidney (Pediatrics)
II
Benedetti, Daniel
NCT04322318
COGAREN1921
A Study of a Patient-Specific Neoantigen Vaccine in Combination With Immune Checkpoint Blockade for Patients With Metastatic Colorectal Cancer
Multiple Cancer Types
The primary objective of the Phase 2 portion of the study is to characterize the clinical
activity of maintenance therapy with GRT-C901/GRT-R902 (patient-specific vaccines) in
combination with checkpoint inhibitors in addition to fluoropyrimidine/bevacizumab versus a
fluoropyrimidine/bevacizumab alone as assessed by changes in circulating tumor (ct)DNA. The
primary objective of the Phase 3 portion is to demonstrate clinical efficacy of the regimen
as assessed by progression-free survival.
activity of maintenance therapy with GRT-C901/GRT-R902 (patient-specific vaccines) in
combination with checkpoint inhibitors in addition to fluoropyrimidine/bevacizumab versus a
fluoropyrimidine/bevacizumab alone as assessed by changes in circulating tumor (ct)DNA. The
primary objective of the Phase 3 portion is to demonstrate clinical efficacy of the regimen
as assessed by progression-free survival.
Colon,
Rectal
II/III
Eng, Cathy
NCT05141721
VICCGI2204
Evolutionary Inspired Therapy for the Treatment of Fusion Positive Newly Diagnosed, Metastatic Rhabdomyosarcoma
Multiple Cancer Types
This phase II trial investigates evolutionary inspired therapy in treating fusion positive rhabdomyosarcoma that is newly diagnosed and has spread to other places in the body (metastatic). Chemotherapy drugs, such as vinorelbine, vincristine sulfate, and actinomycin D, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide is used to decrease the body's immune response and may inhibit DNA replication and initiate cell death. This study is being done to determine which of 4 different therapeutic treatments will have the best chance of the disease not worsening or coming back.
Pediatrics,
Sarcoma
II
Borinstein, Scott
NCT04388839
VICCPED2134
Lower-Dose Chemoradiation in Treating Patients with Early-Stage Anal Cancer, the DECREASE Study
Rectal
Rectal
This phase II trial studies how well lower-dose chemotherapy plus radiation (chemoradiation) therapy works in comparison to standard-dose chemoradiation in treating patients with early-stage anal cancer. Drugs used in chemotherapy, such as mitomycin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. This study may help doctors find out if lower-dose chemoradiation is as effective and has fewer side effects than standard-dose chemoradiation, which is the usual approach for treatment of this cancer type.
Rectal
II
Eng, Cathy
NCT04166318
ECOGGIEA2182
Testing the Addition of Daratumumab-Hyaluronidase to Enhance Therapeutic Effectiveness of Lenalidomide in Smoldering Multiple Myeloma, The DETER-SMM Trial
Multiple Myeloma
Multiple Myeloma
This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab-hyaluronidase in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Anti-inflammatory drugs, such as dexamethasone lower the bodys immune response and are used with other drugs in the treatment of some types of cancer. Daratumumab-hyaluronidase is a monoclonal antibody, daratumumab, that may interfere with the ability of cancer cells to grow and spread, and hyaluronidase, which may help daratumumab work better by making cancer cells more sensitive to the drug. Giving lenalidomide and dexamethasone with daratumumab-hyaluronidase may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173
A Study to Compare Standard Chemotherapy to Therapy with CPX-351 and/or Gilteritinib for Patients with Newly Diagnosed AML with or without FLT3 Mutations
Multiple Cancer Types
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Leukemia,
Pediatric Leukemia,
Pediatrics
III
Zarnegar-Lumley, Sara
NCT04293562
COGAAML1831