Physician Search
![]() |
![]() |
Consuelo Wilkins, MD, MSCI, Senior Vice President for Health Equity and Inclusive Excellence for Vanderbilt University Medical Center (VUMC) and Senior Associate Dean for Health Equity and Inclusive Excellence for Vanderbilt University School of Medicine, always knew she wanted to be a physician. "Health equity was built into everything I did, even if I didn’t know it or recognize it at the time," Wilkins said. "I have always learned and believed that people are the same — everyone deserves to be healthy, and everyone should have the best opportunities to take care of themselves and their families." Click below to learn more about health equity initiatives. https://momentum.vicc.org/2021/09/everyone-deserves-to-be-healthy/ |
Vanderbilt was the lead site for an NIH-funded, phase 2, multicenter influenza vaccine study in pediatric allogeneic hematopoietic stem cell transplant (HCT) recipients that may lead to a change in the current flu vaccine recommendations in this vulnerable population. Natasha Halasa, MD, MPH and colleagues recently published in the New England Journal of Medicine, that two doses of high-dose trivalent flu vaccine resulted in higher amounts of influenza-specific antibodies than two doses of standard dose quadrivalent vaccine. https://news.vumc.org/2023/03/02/high-dose-flu-vaccine-beneficial-for-pediatric-stem-cell-transplant-patients/ |
Treatment of GVHD in Hematopoietic Stem Cell Transplant (HSCT) Recipients Using AAT Plus Corticosteroids (CS) Compared With Corticosteroids Alone (BMT CTN 1705)
Miscellaneous
Miscellaneous
Study CSL964_5001 will investigate the efficacy of AAT with corticosteroids compared with
corticosteroids alone as first line therapy for patients with high-risk acute GVHD
corticosteroids alone as first line therapy for patients with high-risk acute GVHD
Miscellaneous
III
Kitko, Carrie
NCT04167514
VICCCTT2221
A Phase 1 Study in Patients With HPV16+ Recurrent/ Metastatic Head and Neck Squamous Cell Carcinoma
Multiple Cancer Types
This is a multi-center, open-label, phase 1 dose escalation and expansion study evaluating
the safety, anti-tumor effect, and immunogenicity of CUE-101 as monotherapy treatment in
second line or CUE-101 Combination Therapy with Pembrolizumab in first line patients with
HPV16+ Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma (HNSCC)
the safety, anti-tumor effect, and immunogenicity of CUE-101 as monotherapy treatment in
second line or CUE-101 Combination Therapy with Pembrolizumab in first line patients with
HPV16+ Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma (HNSCC)
Head/Neck,
Phase I
I
Gibson, Mike
NCT03978689
VICCPHI1981
Testing the Addition of 131I-MIBG or Lorlatinib to Intensive Therapy in People with High-Risk Neuroblastoma (NBL)
Multiple Cancer Types
This phase III trial studies iobenguane I-131 or lorlatinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Lorlatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or lorlatinib and standard therapy may work better compared to lorlatinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
Neuroblastoma (Pediatrics),
Pediatrics
III
Benedetti, Daniel
NCT03126916
COGANBL1531
Accelerated or Standard BEP Chemotherapy in Treating Patients with Intermediate or Poor-Risk Metastatic Germ Cell Tumors
Germ Cell (Pediatrics)
Germ Cell (Pediatrics)
This phase III trial compares the effect of an accelerated schedule of bleomycin sulfate, etoposide phosphate, and cisplatin (BEP) chemotherapy to the standard schedule of BEP chemotherapy for the treatment of patients with intermediate or poor-risk germ cell tumors that have spread to other places in the body (metastatic). Drugs used in chemotherapy, such as bleomycin sulfate, etoposide phosphate, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BEP chemotherapy on a faster, or accelerated schedule may work better with fewer side effects in treating patients with intermediate or poor-risk metastatic germ cell tumors compared to the standard schedule.
Germ Cell (Pediatrics)
III
Borinstein, Scott
NCT02582697
COGAGCT1532
Olaparib in Treating Patients with Advanced Glioma, Cholangiocarcinoma, or Solid Tumors with IDH1 or IDH2 Mutations
Miscellaneous
Miscellaneous
This phase II trial studies how well olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that have spread to other places in the body (metastatic) and usually cannot be cured or controlled with treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Miscellaneous
II
Davis, Elizabeth
NCT03212274
VICCMD18129ET-CT
Active Surveillance, Bleomycin, Etoposide, Carboplatin or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors
Multiple Cancer Types
This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumors has spread outside of the organ in which it developed, it is considered metastatic. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.
Germ Cell (Pediatrics),
Gynecologic,
Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531
Irinotecan Hydrochloride, Temozolomide, and Dinutuximab with or without Eflornithine in Treating Patients with Relapsed or Refractory Neuroblastoma
Multiple Cancer Types
This phase II trial studies how well irinotecan hydrochloride, temozolomide, and dinutuximab work with or without eflornithine in treating patients with neuroblastoma that has come back (relapsed) or that isn't responding to treatment (refractory). Drugs used in chemotherapy, such as irinotecan hydrochloride and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Eflornithine blocks the production of chemicals called polyamines that are important in the growth of cancer cells. Giving eflornithine with irinotecan hydrochloride, temozolomide, and dinutuximab, may work better in treating patients with relapsed or refractory neuroblastoma.
Neuroblastoma (Pediatrics),
Pediatrics
II
Benedetti, Daniel
NCT03794349
COGANBL1821
Inotuzumab Ozogamicin in Treating Younger Patients with B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia
Multiple Cancer Types
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Pediatric Leukemia,
Pediatrics
II
Friedman, Debra
NCT02981628
COGAALL1621
Acalabrutinib for the Treatment of Chronic Graft Versus Host Disease
Miscellaneous
Miscellaneous
This phase II trial studies how well acalabrutinib works in treating patients with chronic graft versus host disease. Acalabrutinib may be an effective treatment for graft-versus-host disease caused by a stem cell transplant.
Miscellaneous
II
Kitko, Carrie
NCT04198922
VICCCTT2122
A Study of HC-7366 to Establish the Maximum Tolerated Dose (MTD) and Recommended Phase 2 Dose (RP2D)
Multiple Cancer Types
This is a first in human, multicenter, open label, Phase 1a/b dose escalation and dose
expansion study to establish the maximum tolerated dose (MTD), recommended Phase 2 dose
(RP2D), and evaluate the safety and tolerability of QD oral dosing of HC 7366 in a dose
escalating fashion in subjects with advanced solid tumors. Up to 36 subjects will be enrolled
into the Phase 1a dose escalation part of the study. Every effort will be made to ensure
approximately 50% of all subjects enrolled in this study will be subjects with the tumors of
special interest such as squamous cell carcinoma of the head and neck (SCCHN), colorectal
cancer (CRC), non-small cell lung cancer (NSCLC), and transitional cell carcinoma of the
bladder (TCC). Subjects with other solid tumor types are also eligible provided study
selection criteria are met and they do not exceed 50% of all enrolled subjects. The study
will be conducted in the United States at approximately 3 to 5 sites. This Phase 1a/b study
will follow a traditional 3+3 design. The starting dose level will be 10 mg QD, escalating to
20, 40, 75, 125, and 150 mg QD as safety allows. All doses are to be administered in the
fasting state with water at least 1 hour before food or at least 2 hours after food. The
Phase 1b dose expansion part will involve cohort expansion at up to 2 dose levels selected
from the dose escalation data by the safety monitoring committee (SMC), to obtain additional
safety and preliminary efficacy information. Each cohort in Phase 1b will enroll 15 subjects.
The study will be expanded into a Phase 2 study via protocol amendment which will then assess
the dose and tumor type(s) selected in Phase 1a/b as the most appropriate for further
clinical development. Subjects will be dosed until unacceptable toxicity, disease progression
per immune-related Response Evaluation Criteria in Solid Tumors (iRECIST), discontinuation of
treatment for other protocol allowed reason (eg, subject refusal), any other administrative
reasons, or after 2 years of treatment, whichever occurs first. For scheduling purposes,
dosing will occur in 3 week cycles and computed tomography (CT) scans will be conducted once
every 6 weeks with the first postbaseline scan after 6 weeks of dosing (precycle 3).
expansion study to establish the maximum tolerated dose (MTD), recommended Phase 2 dose
(RP2D), and evaluate the safety and tolerability of QD oral dosing of HC 7366 in a dose
escalating fashion in subjects with advanced solid tumors. Up to 36 subjects will be enrolled
into the Phase 1a dose escalation part of the study. Every effort will be made to ensure
approximately 50% of all subjects enrolled in this study will be subjects with the tumors of
special interest such as squamous cell carcinoma of the head and neck (SCCHN), colorectal
cancer (CRC), non-small cell lung cancer (NSCLC), and transitional cell carcinoma of the
bladder (TCC). Subjects with other solid tumor types are also eligible provided study
selection criteria are met and they do not exceed 50% of all enrolled subjects. The study
will be conducted in the United States at approximately 3 to 5 sites. This Phase 1a/b study
will follow a traditional 3+3 design. The starting dose level will be 10 mg QD, escalating to
20, 40, 75, 125, and 150 mg QD as safety allows. All doses are to be administered in the
fasting state with water at least 1 hour before food or at least 2 hours after food. The
Phase 1b dose expansion part will involve cohort expansion at up to 2 dose levels selected
from the dose escalation data by the safety monitoring committee (SMC), to obtain additional
safety and preliminary efficacy information. Each cohort in Phase 1b will enroll 15 subjects.
The study will be expanded into a Phase 2 study via protocol amendment which will then assess
the dose and tumor type(s) selected in Phase 1a/b as the most appropriate for further
clinical development. Subjects will be dosed until unacceptable toxicity, disease progression
per immune-related Response Evaluation Criteria in Solid Tumors (iRECIST), discontinuation of
treatment for other protocol allowed reason (eg, subject refusal), any other administrative
reasons, or after 2 years of treatment, whichever occurs first. For scheduling purposes,
dosing will occur in 3 week cycles and computed tomography (CT) scans will be conducted once
every 6 weeks with the first postbaseline scan after 6 weeks of dosing (precycle 3).
Miscellaneous,
Phase I
I
Berlin, Jordan
NCT05121948
VICCPHI2229